Simulation of Border Deformation in Corrosion System by Coupling Analytical Solution and Finite Element Method

Djedjiga KARED BOUKHLEF, Dalila BOUGHRARA, Hassane MOHELLEBI

Abstract


The objective of this work is to develop a digital model in order to envisage metal degradation on a microscopic scale. The reaction on the surface of the anodic considered as a degradation reaction when the surface forming the cathode remains unchanged. A one dimensional analytical solution representing the two mediums (anode and cathode), is introduced in the form of boundary conditions of Neumann type to the interface metal/electrolyte and thus the resolution was performed without mesh the analytical zone. Also, no re-meshing solving domain was need when simulating the border deformation. 


Keywords


Coupling anlytic; Finite element; Boudary deformation; Moving Mesh; Distrubution potential and current density;

Full Text:

PDF

References


- N. Murer, N. Missert, R. Buchheit, Towards the Modeling of Microgalvanic Corrosion in Aluminum Alloys: the Choice of Boundary Conditions. In: Proceedings of the COMSOL Users Conference Boston, 2008.

- N. Murer, R. Oltra, B. Vuillemin, O. Néel, Numerical modelling of the galvanic coupling in aluminium alloys: A discussion on the application of local probe techniques. Corros. Sci. 52(1) (2010) 130-139. doi:10.1016/j.corsci.2009.08.051

- C.R. Crowe, R.G. Kasper, Ionic Current Densities in the Nearfield of a Corroding Iron‐Copper Galvanic Couple. J. Electrochem. Soc. 133(5) (1986) 879-887. doi:10.1149/1.2108755

- K.B. Deshpande, Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)–mild steel and AE44–aluminium alloy (AA6063) in brine solution. Corros. Sci. 52(10) (2010) 3514-3522. doi:10.1016/j.corsci.2010.06.031

- F. Thébault, B. Vuillemin, R. Oltra, K. Ogle, C. Allely, Investigation of self-healing mechanism on galvanized steels cut edges by coupling SVET and numerical modelling. Electrochim. Acta 53(16) (2008) 5226-5234. doi:10.1016/j.electacta.2008.02.066

- F. Thébault, B. Vuillemin, R. Oltra, C. Allely, K. Ogle, Modeling bimetallic corrosion under thin electrolyte films. Corros. Sci. 53(1) (2011) 201-207. doi:10.1016/j.corsci.2010.09.010

- D. Mizuno, Y. Shi, R.G. Kelly, Modeling of Galvanic Interactions between AA5083 and Steel Atmospheric Condition. In: Proceedings of the COMSOL Users Conference Boston, 2011.

- C. Wagner, Theoretical Analysis of the Current Density Distribution in Electrolytic Cells. J. Electrochem. Soc. 98(3) (1951), 116-128. doi:10.1149/1.2778113

- J.T. Waber, M. Rosenbluth, Mathematical Studies of Galvanic Corrosion: II. Coplanar Electrodes with One Electrode Infinitely Large and with Equal Polarization Parameters J. Electrochem. Soc. 102(6) (1955) 344-353. doi:10.1149/1.2430058

- J.T. Waber, Mathematical studies of galvanic corrosion: VI. Limiting case of very thin films. J. Electrochem. Soc. 103(10) (1956) 567-570. doi:10.1149/1.2430158

- E. McCafferty, Distribution of Potential and Current in Circular Corrosion Cells Having Unequal Polarization Parameters. J. Electrochem. Soc. 124(12) (1977) 1869-1878. doi:10.1149/1.2133178

- J-M. Lee, Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte. Electrochim. Acta 51(16) (2006) 3256-3260. doi:10.1016/j.electacta.2005.09.026

- R. Morris, W. Smyrl, Current and Potential Distribution in Thin Electrolyte Layer Galvanic Cells. J. Electrochem. Soc. 136(11) (1989) 3229-3236. doi:10.1149/1.2096430

- F. Thebault, B. Vuillemin, R. Oltra, C. Allely, F. Dosdat, K. Ogle, Predictive Model for Cut-Edge Corrosion of Galvanized Steels. ECS Transactions 3(31) (2007) 343-353. doi:10.1149/1.2789240

- J-B. Jorcin, C. Blanc, N. Pébère, B. Tribollet, V. Vivier, Galvanic Coupling Between Pure Copper and Pure Aluminum – Experimental Approach and Mathematical Model. J. Electrochem. Soc. 155(1) (2008) C46-C51. doi:10.1149/1.2803506

- L. Lacroix, C. Blanc, N. Pébère, B. Tribollet, V. Vivier, Localized approach to galvanic coupling in an aluminium – magnesium system. J. Electrochem. Soc. 156(8) (2009) C259–C265. doi: 10.1149/1.3148833

- K.B. Deshpande, Experimental investigation of galvanic corrosion: Comparison between SVET and immersion techniques. Corros. Sci. 52(9) (2010) 2819–2826. doi:10.1016/j.corsci.2010.04.023

- K.B. Deshpande, Numerical modeling of micro-galvanic corrosion. Electrochim. Acta 56(4) (2011) 1737–1745. doi:10.1016/j.electacta.2010.09.044

- J.X. Jia, G. Song, A. Atrens, Experimental measurement and computer simulation of galvanic corrosion of magnesium coupled to steel. Adv. Eng. Mater. 9(1-2) (2007) 65–74. doi:10.1002/adem.200600206

- D. Trinh, P. Dauphin Ducharme, U. Mengesha Tefashe, J.R. Kish, J. Mauzeroll, Influence of edge effects on local corrosion rate of magnesium alloy/mild steel galvanic couple. Anal. Chem. 84(22) (2012) 9899–9906. doi:10.1021/ac3022955

- N. Murer, N.A. Missert, R.G. Buchheit, Finite element modeling of the galvanic corrosion of aluminium at engineered copper particles. J. Electrochem. Soc. 159(6) (2012) C265–C276. doi:10.1149/2.102206jes

- Y. Shi, R.G. Kelly, Experimental Evaluation and Modeling of Galvanic Interactions between Aluminum Alloy 7075-T6 and Noble Materials. ECS Transactions 41(25) (2012) 155-166. doi:10.1149/1.3697586

- R. Oltra, A. Zimmer, C. Sorriano, F. Rechou, C. Borkowski, O. Néel, Simulation of pH-controlled dissolution of aluminium based on a modified Scanning Electrochemical Microscope experiment to mimic localized trenching on aluminium alloys. Electrochim. Acta 56(20) (2011) 7038-7044. doi:10.1016/j.electacta.2011.06.002

- W. Sun, Optimal control of impressed cathodic protection system in ship building. Appl. Math. Model. 20(11) (1996) 823-828. doi:10.1016/S0307-904X(96)00088-1

- J.-F. Yan, T.V. Nguyen, R.E. White, R.B. Griffin, Mathematical modeling of the formation of calcareous deposits on cathodically protected steel in seawater. J. Electrochem. Soc. 140(3) (1993) 733-742. doi:10.1149/1.2056150

- R. Radouani, Y. Echcharqy, M. Essahli, Numerical simulation of galvanic corrosion between carbon steel and low alloy steel in a bolted joint. Int. J. Corros. (2017) ID 6174904. doi:10.1155/2017/6174904

- S. Fujimoto, Numerical Modeling for Corrosion. Electrochem. Soc. Interface 23(4) (2014) 45.

- D. Boukhlef, D. Boughrara, H. Mohellebi, Modeling by Finite Elements Method of Nonlinear Conductivity in Corrosive Mediums. In: Proceedings of the International Conference on Mechanics, Materials, Mechanical Engineering and Chemical Engineering, Barcelona, Spain, (7-9 April 2015), pp. 203-210, ISSN: 2227‐4596, ISBN: 978‐1‐61804‐295‐8.

- H. Mohellebi, M. Féliachi, K. Srairi, Coupled 2D-Analytical and Finite Elements Analysis for the Eddy Current Computation. In: Proceedings of the Third International Workshop on Electric and Magnetic Field-Liège, Belgium, May 1996, pp. 339-341.

- D. Schaefer, J. Doose, A. Rennings, D. Erni, Numerical Analysis of Propeller-induced Low-frequency Modulations in Underwater Electric Potential Signatures of Naval Vessels in The Context of Corrosion Protection Systems. In: Proceedings of COMSOL Conference in Stuttgart, 2011.

- A. Ivanov, Simulation of electrochemical etching of silicon with COMSOL. In: Proceedings of the COMSOL Conference in Stuttgart, 2011.

- A.D. King, J.S. Lee, J.R. Scully, Finite Element Analysis of the Galvanic Couple Current and Potential Distribution between Mg and 2024-T351 in a Mg Rich Primer Configuration. J. Electrochem. Soc. 163(7) (2016) C342-C356. doi:10.1149/2.0171607jes


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.