Simulation of Border Deformation in Corrosion System by Coupling Analytical Solution and Finite Element Method
Abstract
The objective of this work is to develop a digital model in order to envisage metal degradation on a microscopic scale. The reaction on the surface of the anodic considered as a degradation reaction when the surface forming the cathode remains unchanged. A one dimensional analytical solution representing the two mediums (anode and cathode), is introduced in the form of boundary conditions of Neumann type to the interface metal/electrolyte and thus the resolution was performed without mesh the analytical zone. Also, no re-meshing solving domain was need when simulating the border deformation.
Keywords
Full Text:
PDFReferences
- N. Murer, N. Missert, R. Buchheit, Towards the Modeling of Microgalvanic Corrosion in Aluminum Alloys: the Choice of Boundary Conditions. In: Proceedings of the COMSOL Users Conference Boston, 2008.
- N. Murer, R. Oltra, B. Vuillemin, O. Néel, Numerical modelling of the galvanic coupling in aluminium alloys: A discussion on the application of local probe techniques. Corros. Sci. 52(1) (2010) 130-139. doi:10.1016/j.corsci.2009.08.051
- C.R. Crowe, R.G. Kasper, Ionic Current Densities in the Nearfield of a Corroding Iron‐Copper Galvanic Couple. J. Electrochem. Soc. 133(5) (1986) 879-887. doi:10.1149/1.2108755
- K.B. Deshpande, Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)–mild steel and AE44–aluminium alloy (AA6063) in brine solution. Corros. Sci. 52(10) (2010) 3514-3522. doi:10.1016/j.corsci.2010.06.031
- F. Thébault, B. Vuillemin, R. Oltra, K. Ogle, C. Allely, Investigation of self-healing mechanism on galvanized steels cut edges by coupling SVET and numerical modelling. Electrochim. Acta 53(16) (2008) 5226-5234. doi:10.1016/j.electacta.2008.02.066
- F. Thébault, B. Vuillemin, R. Oltra, C. Allely, K. Ogle, Modeling bimetallic corrosion under thin electrolyte films. Corros. Sci. 53(1) (2011) 201-207. doi:10.1016/j.corsci.2010.09.010
- D. Mizuno, Y. Shi, R.G. Kelly, Modeling of Galvanic Interactions between AA5083 and Steel Atmospheric Condition. In: Proceedings of the COMSOL Users Conference Boston, 2011.
- C. Wagner, Theoretical Analysis of the Current Density Distribution in Electrolytic Cells. J. Electrochem. Soc. 98(3) (1951), 116-128. doi:10.1149/1.2778113
- J.T. Waber, M. Rosenbluth, Mathematical Studies of Galvanic Corrosion: II. Coplanar Electrodes with One Electrode Infinitely Large and with Equal Polarization Parameters J. Electrochem. Soc. 102(6) (1955) 344-353. doi:10.1149/1.2430058
- J.T. Waber, Mathematical studies of galvanic corrosion: VI. Limiting case of very thin films. J. Electrochem. Soc. 103(10) (1956) 567-570. doi:10.1149/1.2430158
- E. McCafferty, Distribution of Potential and Current in Circular Corrosion Cells Having Unequal Polarization Parameters. J. Electrochem. Soc. 124(12) (1977) 1869-1878. doi:10.1149/1.2133178
- J-M. Lee, Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte. Electrochim. Acta 51(16) (2006) 3256-3260. doi:10.1016/j.electacta.2005.09.026
- R. Morris, W. Smyrl, Current and Potential Distribution in Thin Electrolyte Layer Galvanic Cells. J. Electrochem. Soc. 136(11) (1989) 3229-3236. doi:10.1149/1.2096430
- F. Thebault, B. Vuillemin, R. Oltra, C. Allely, F. Dosdat, K. Ogle, Predictive Model for Cut-Edge Corrosion of Galvanized Steels. ECS Transactions 3(31) (2007) 343-353. doi:10.1149/1.2789240
- J-B. Jorcin, C. Blanc, N. Pébère, B. Tribollet, V. Vivier, Galvanic Coupling Between Pure Copper and Pure Aluminum – Experimental Approach and Mathematical Model. J. Electrochem. Soc. 155(1) (2008) C46-C51. doi:10.1149/1.2803506
- L. Lacroix, C. Blanc, N. Pébère, B. Tribollet, V. Vivier, Localized approach to galvanic coupling in an aluminium – magnesium system. J. Electrochem. Soc. 156(8) (2009) C259–C265. doi: 10.1149/1.3148833
- K.B. Deshpande, Experimental investigation of galvanic corrosion: Comparison between SVET and immersion techniques. Corros. Sci. 52(9) (2010) 2819–2826. doi:10.1016/j.corsci.2010.04.023
- K.B. Deshpande, Numerical modeling of micro-galvanic corrosion. Electrochim. Acta 56(4) (2011) 1737–1745. doi:10.1016/j.electacta.2010.09.044
- J.X. Jia, G. Song, A. Atrens, Experimental measurement and computer simulation of galvanic corrosion of magnesium coupled to steel. Adv. Eng. Mater. 9(1-2) (2007) 65–74. doi:10.1002/adem.200600206
- D. Trinh, P. Dauphin Ducharme, U. Mengesha Tefashe, J.R. Kish, J. Mauzeroll, Influence of edge effects on local corrosion rate of magnesium alloy/mild steel galvanic couple. Anal. Chem. 84(22) (2012) 9899–9906. doi:10.1021/ac3022955
- N. Murer, N.A. Missert, R.G. Buchheit, Finite element modeling of the galvanic corrosion of aluminium at engineered copper particles. J. Electrochem. Soc. 159(6) (2012) C265–C276. doi:10.1149/2.102206jes
- Y. Shi, R.G. Kelly, Experimental Evaluation and Modeling of Galvanic Interactions between Aluminum Alloy 7075-T6 and Noble Materials. ECS Transactions 41(25) (2012) 155-166. doi:10.1149/1.3697586
- R. Oltra, A. Zimmer, C. Sorriano, F. Rechou, C. Borkowski, O. Néel, Simulation of pH-controlled dissolution of aluminium based on a modified Scanning Electrochemical Microscope experiment to mimic localized trenching on aluminium alloys. Electrochim. Acta 56(20) (2011) 7038-7044. doi:10.1016/j.electacta.2011.06.002
- W. Sun, Optimal control of impressed cathodic protection system in ship building. Appl. Math. Model. 20(11) (1996) 823-828. doi:10.1016/S0307-904X(96)00088-1
- J.-F. Yan, T.V. Nguyen, R.E. White, R.B. Griffin, Mathematical modeling of the formation of calcareous deposits on cathodically protected steel in seawater. J. Electrochem. Soc. 140(3) (1993) 733-742. doi:10.1149/1.2056150
- R. Radouani, Y. Echcharqy, M. Essahli, Numerical simulation of galvanic corrosion between carbon steel and low alloy steel in a bolted joint. Int. J. Corros. (2017) ID 6174904. doi:10.1155/2017/6174904
- S. Fujimoto, Numerical Modeling for Corrosion. Electrochem. Soc. Interface 23(4) (2014) 45.
- D. Boukhlef, D. Boughrara, H. Mohellebi, Modeling by Finite Elements Method of Nonlinear Conductivity in Corrosive Mediums. In: Proceedings of the International Conference on Mechanics, Materials, Mechanical Engineering and Chemical Engineering, Barcelona, Spain, (7-9 April 2015), pp. 203-210, ISSN: 2227‐4596, ISBN: 978‐1‐61804‐295‐8.
- H. Mohellebi, M. Féliachi, K. Srairi, Coupled 2D-Analytical and Finite Elements Analysis for the Eddy Current Computation. In: Proceedings of the Third International Workshop on Electric and Magnetic Field-Liège, Belgium, May 1996, pp. 339-341.
- D. Schaefer, J. Doose, A. Rennings, D. Erni, Numerical Analysis of Propeller-induced Low-frequency Modulations in Underwater Electric Potential Signatures of Naval Vessels in The Context of Corrosion Protection Systems. In: Proceedings of COMSOL Conference in Stuttgart, 2011.
- A. Ivanov, Simulation of electrochemical etching of silicon with COMSOL. In: Proceedings of the COMSOL Conference in Stuttgart, 2011.
- A.D. King, J.S. Lee, J.R. Scully, Finite Element Analysis of the Galvanic Couple Current and Potential Distribution between Mg and 2024-T351 in a Mg Rich Primer Configuration. J. Electrochem. Soc. 163(7) (2016) C342-C356. doi:10.1149/2.0171607jes
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN 2170-127X
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.