Accepted Papers to Appear in Future Issues

Reliability Based Robust Design Optimization Based On Sensitivity And Elasticity Factors Analysis

Naoual  Karar, Ahmed Felkaoui, Farhat Djeddou

In this paper, a Reliability Based Robust Design Optimization (RBRDO) based on sensitivity and elasticity factors analysis is presented. In the first step, a reliability assessment is performed using the First-and Second Order Reliability Method (FORM)/ (SORM), and Monte Carlo Simulation. Furthermore, FORM method is used for reliability elasticity factors assessment, which can be carried out to determine the most influential parameters, these factors can be help to reduce the size of design variables vector in RBRDO process. The main objective of the RBRDO is to improve both reliability and design of a cylindrical gear pair under uncertainties. This approach is achieved by integration of two objectives which minimize the variance and mean values of performance function. To solve this problem a decoupled approach of Sequential Optimization and Reliability Assessment (SORA) method is implemented. The results obtained shown that a desired reliability with a robust design is progressively achieved.
Date accepted: 2019-10-08

The Effect of Masonry Infill Walls on the Reinforced Concrete Frames Behavior under Lateral Load

Ismail LAYADI, Ali MESSABHIA, Jean-Patrick PLASSIARD, Olivier PLE

The reinforced concrete structures with masonry infill walls are widely used to construct buildings in Algeria, as in many parts of the world. According to earthquake analysis, this type of construction can undergo serious damage under seismic load. The interaction between the infill wall and the surrounding reinforced concrete structure is considered a key parameter, which could trigger damage and even collapse in self-stable frame buildings. To study the behavior of this type of structures and the wall–frame interaction, four half-scale single-storey, single-bay reinforced concrete infilled and unfilled frames were constructed and tested under in-plane lateral load. Furthermore, the experimental results were analyzed using the Digital Image Correlation (DIC) technique giving a detailed analysis of displacement and strain fields. The wall–frame interaction was evaluated in terms of displacement field evolution and interface slip in the contact contour. The masonry infill wall demonstrated a significant influence on the in-plane lateral response of this type of structure. The analysis of the results of the experiment are discussed in this paper.
Date accepted : 2019-12-02

Sensitivity Study of Load-Dependent Ritz Vectors on Modal and Seismic responses of Cable Stayed Bridges

In the present article, a 3D Finite Element Model (FEM) of a bridge structure under load dynamics is performed in order to assess the sensitivity study of Load-Dependant Ritz vectors (LDR) on modal and seismic responses of cable stayed bridges. In this context, two techniques are examined in the present study for solving structural dynamics problems; the Traditional Modal Superposition (TMS) technique and that of Load-Dependent Ritz orthogonal vectors (LDR). The latter is based on a very efficient algorithm allowing the systematic generation of Load-Dependent Ritz orthogonal vectors (LDR), the accuracy of this method is significantly influenced by the selection of LDR vectors used for the modeling of the structural behavior. The cable-stayed bridge connecting two districts in eastern Algeria, characterized by an expected Peak Ground Acceleration (PGA) equal to 0.275g in accordance with Algerian seismic design code is selected in order to perform critical modal properties such as, frequencies, shapes of the required vibration modes and effective mass participation as well as the dynamic response of the cable stayed bridge under earthquake loadings in three orthogonal directions (longitudinal, transversal and vertical).  The results of this study reveal that the LDR vectors method which has the important advantages of short Central Processing Unit (CPU) time as compared to traditional modal method is very efficient for modal and seismic analyses of cable stayed bridges.
Date accepted: 2019-12-15

Mechanistic Analysis and Economic Benefits of Fiber-Reinforced Asphalt Overlay Mixtures
Nitish Raj BASTOLA, Mena I. SOULIMAN, Ashish TRIPATHI, Alexander PEARSON

Among the various distresses in flexible pavement structures, rutting and fatigue cracking can be accounted as two of the major distresses that need to be addressed by pavement engineers. Laboratory tests, such as four-point bending beam and flow number are utilized to characterize the rutting and cracking resistance of flexible pavements. Various construction practices are introduced to reduce the effect of fatigue and rutting in pavement structures. One of such methods is applying fibers to the asphalt mixture to prolong the serviceability and the performance of the pavement structures. The use of fibers is applicable to freshly constructed pavements as well as in the pavement rehabilitation and maintenance work, such as overlay. This paper primarily analyses the application of fibers in the overlay of pavements. The two major cases of the pavement with original asphalt overlay and the one with fibers mixed asphalt overlay is considered utilizing a developed testing program where the mechanistic analysis as well as the economic effectiveness are evaluated. 3D move analysis software package is utilized extensively as a means of mechanistic analysis tool. It is found that the fiber mixture pavement overlay had a higher pavement life than the ordinary asphalt overlay. In addition, the cost effectiveness in terms of fatigue and rutting of fiber-reinforced overlay structures were 4.4 and 4.1 times the unmodified mixtures, respectively. The use of fibers in the overlay of pavement resulted in higher pavement life with a high cost effectiveness.
Date accepted : 2020-02-07