Parametric study of crack propagation under thermal shock using phase field method
Abstract
Keywords
Full Text:
PDFReferences
- V.K. Chauhan, P. Thennarasu, R. Dubey, S. Pandey, R. Naresh, Recent efforts and advances towards sustainable ceramics made from textile wastes- A review. Open Ceramics, 16 (2023) 100500. doi:10.1016/j.oceram.2023.100500.
- C.P. Jiang, X.F. Wu, J. Li, F. Song, Y.F. Shao, X.H. Xu, P. Yan, A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock. Acta Materialia, 60(11) (2012) 4540-4550. doi:10.1016/j.actamat.2012.05.020.
- D. Li, W. Li, R. Wang, D. Fang, The Effects of Water Entry Postures on the Thermal Shock Behavior of Alumina. International Journal of Applied Ceramic Technology, 13(1) (2016) 56-60. doi:10.1111/ijac.12411.
- Y. Shao, F. Song, B. Liu, W. Li, L. Li, C. Jiang, Observation of ceramic cracking during quenching. Journal of the American Ceramic Society, 100(2) (2017) 520-523. doi:10.1111/jace.14674.
- Y. Liu, X. Wu, Q. Guo, C. Jiang, F. Song, J. Li, Experiments and numerical simulations of thermal shock crack patterns in thin circular ceramic specimens. Ceramics International, 41(1, Part B) (2015) 1107-1114. doi:10.1016/j.ceramint.2014.09.036.
- J. Schlacher, S. Geier, M. Schwentenwein, R. Bermejo, Towards 3D-printed alumina-based multi-material components with enhanced thermal shock resistance. Journal of the European Ceramic Society, 44(4) (2024) 2294-2303. doi:10.1016/j.jeurceramsoc.2023.11.009.
- G. Carta, I.S. Jones, M. Brun, N.V. Movchan, A.B. Movchan, Crack propagation induced by thermal shocks in structured media. International Journal of Solids and Structures, 50(18) (2013) 2725-2736. doi:10.1016/j.ijsolstr.2013.05.001.
- L.F. Faria Ricardo, D. Leguillon, G. Parry, A. Doitrand, Modeling the thermal shock induced cracking in ceramics. Journal of the European Ceramic Society, 40(4) (2020) 1513-1521. doi:10.1016/j.jeurceramsoc.2019.11.071.
- G.A. Francfort, J.J. Marigo, Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 46(8) (1998) 1319-1342. doi:10.1016/S0022-5096(98)00034-9.
- B. Bourdin, G.A. Francfort, J.J. Marigo, Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48(4) (2000) 797-826. doi:10.1016/S0022-5096(99)00028-9.
- A.A. Griffith, VI. The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221(582-593) (1921) 163-198. doi:10.1098/rsta.1921.0006.
- G. Molnár, A. Doitrand, R. Estevez, A. Gravouil, Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion. Theoretical and Applied Fracture Mechanics, 109 (2020) 102736. doi:10.1016/j.tafmec.2020.102736.
- G. Molnár, A. Gravouil, 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elements in Analysis and Design, 130 (2017) 27-38. doi:10.1016/j.finel.2017.03.002.
- X. Zhuang, S. Zhou, G.D. Huynh, P. Areias, T. Rabczuk, Phase field modeling and computer implementation: A review. Engineering Fracture Mechanics, 262 (2022) 108234. doi:10.1016/j.engfracmech.2022.108234.
- T.K. Mandal, V.P. Nguyen, J.-Y. Wu, C. Nguyen-Thanh, A. de Vaucorbeil, Fracture of thermo-elastic solids: Phase-field modeling and new results with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering, 376 (2021) 113648. doi:10.1016/j.cma.2020.113648.
- T. Wang, H. Han, Y. Wang, X. Ye, G. Huang, Z. Liu, Z. Zhuang, Simulation of crack patterns in quasi-brittle materials under thermal shock using phase field and cohesive zone models. Engineering Fracture Mechanics, 276 (2022) 108889. doi:10.1016/j.engfracmech.2022.108889.
- J.-Y. Wu, A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 103 (2017) 72-99. doi:10.1016/j.jmps.2017.03.015.
- J.-Y. Wu, A geometrically regularized gradient-damage model with energetic equivalence. Computer Methods in Applied Mechanics and Engineering, 328 (2018) 612-637. doi:10.1016/j.cma.2017.09.027.
- J.-Y. Wu, V.P. Nguyen, A length scale insensitive phase-field damage model for brittle fracture. Journal of the Mechanics and Physics of Solids, 119 (2018) 20-42. doi:10.1016/j.jmps.2018.06.006.
- J.-Y. Wu, Y. Huang, V.P. Nguyen, On the BFGS monolithic algorithm for the unified phase field damage theory. Computer Methods in Applied Mechanics and Engineering, 360 (2020) 112704. doi:10.1016/j.cma.2019.112704.
- J.-Y. Wu, Y. Huang, Comprehensive implementations of phase-field damage models in Abaqus. Theoretical and Applied Fracture Mechanics, 106 (2020) 102440. doi:10.1016/j.tafmec.2019.102440.
- K. Pham, H. Amor, J.-J. Marigo, C. Maurini, Gradient Damage Models and Their Use to Approximate Brittle Fracture. International Journal of Damage Mechanics, 20(4) (2011) 618-652. doi:10.1177/1056789510386852.
- C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International journal for numerical methods in engineering, 83(10) (2010) 1273-1311. doi:10.1002/nme.2861.
- B. Bourdin, G.A. Francfort, J.-J. Marigo, The Variational Approach to Fracture. Journal of Elasticity, 91(1) (2008) 5-148. doi:10.1007/s10659-007-9107-3.
- E. Tanné, T. Li, B. Bourdin, J.J. Marigo, C. Maurini, Crack nucleation in variational phase-field models of brittle fracture. Journal of the Mechanics and Physics of Solids, 110 (2018) 80-99. doi:10.1016/j.jmps.2017.09.006.
- R. Bharali, Numerical Methods and Multi-Scale Modeling for Phase-Field Fracture-With Applications in Linear Elastic and Poro-Elastic Media. Chalmers Tekniska Hogskola (Sweden), 2024.
- Abaqus Analysis User’s Guide, Simulia Inc., Providence, RI, USA. (2022).
- Abaqus Analysis User Subroutines Reference Manual, Simulia Inc., Providence, RI, USA. (2022).
- P. Le Grognec, E. Vasikaran, Y. Charles, P. Gilormini, Implementation of a reaction-diffusion process in the Abaqus finite element software. Mechanics & Industry, 21(5) (2020). doi:10.1051/meca/2020010.
- J. Li, F. Song, C. Jiang, Direct numerical simulations on crack formation in ceramic materials under thermal shock by using a non-local fracture model. Journal of the European Ceramic Society, 33(13) (2013) 2677-2687. doi:10.1016/j.jeurceramsoc.2013.04.012.
- H. Ruan, S. Rezaei, Y. Yang, D. Gross, B.-X. Xu, A thermo-mechanical phase-field fracture model: Application to hot cracking simulations in additive manufacturing. Journal of the Mechanics and Physics of Solids, 172 (2023) 105169. doi:10.1016/j.jmps.2022.105169.
- D. Li, Y. Pang, T. Lu, Z. Liu, S. Chen, Numerical Analysis of Thermal Shock Cracking Behaviors of Ceramics Based on the Force-Heat Equivalence Energy Density Principle. Frontiers in Materials, 8 (2022). doi:10.3389/fmats.2021.825327.
- D. Leguillon, Strength or toughness? A criterion for crack onset at a notch. European Journal of Mechanics - A/Solids, 21(1) (2002) 61-72. doi:10.1016/S0997-7538(01)01184-6.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN 2170-127X
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.