Etude de l’effet d’adhérence acier-béton sur la réponse non-linéaire des piles de pont en BA

Hayat BOUAZZA, Mohammed DJELIL, Mohammed MATALLAH

Abstract


Cet article discute de l’importance d’inclure l’effet de l’adhérence acier-béton dans l’étude du comportement non-linéaire des piles de pont en BA. La sensibilité de la réponse non linéaire à l’adhérence par glissement a été étudiée en considérant un modèle EF multifibre. Des analyses Pushover (cyclique et monotone) ont été conduites et les résultats ont été discutés en considérant différents indicateurs de performances sismiques. L’importance de ce phénomène a été également démontrée en quantifiant les différents états limites de dommages et sa contribution dans le déplacement total de la pile de pont. Les résultats indiquent que l’introduction de l’effet de l’adhérence par glissement des barres d’acier longitudinales peuvent modifier de manière significative les prédictions du comportement non-linéaire des piles de pont en BA où une surestimation de la rigidité initiale et de l’énergie de dissipation des piles de pont ont été observées. De ce fait, la prise en compte de ce phénomène dans la modélisation non linéaire des colonnes en BA est indispensable.


Keywords


Adhérence par glissement; Réponse non-linéaire; Sensibilité; Indicateurs de performances sismiques; Pile de pont

References


- E. Mazzarolo, R. Scotta, L. Berto, A. Saetta, Long anchorage bond–slip formulation for modeling of r.c. elements and joints. Engineering Structures, 34 (2012) 330-341. doi:10.1016/j.engstruct.2011.09.005.

- C. Turgut, L. Jason, L. Davenne, Structural-scale modeling of the active confinement effect in the steel-concrete bond for reinforced concrete structures. Finite Elements in Analysis and Design, 172 (2020) 103386. doi:10.1016/j.finel.2020.103386.

- Y. Liu, H. Hao, Y. Hao, Investigation on the dynamic bond-slip behaviour between steel bar and concrete. Engineering Fracture Mechanics, 291 (2023) 109540. doi:10.1016/j.engfracmech.2023.109540.

- W.-H. Pan, M.-X. Tao, X. Nie, J.-S. Fan, Rebar Anchorage Slip Macromodel Considering Bond Stress Distribution: Monotonic Loading and Model Application. Journal of Structural Engineering, 144(8) (2018) 04018097. doi:10.1061/(ASCE)ST.1943-541X.0002096.

- A.F. Mohammad, M. Faggella, R. Gigliotti, E. Spacone, Effects of bond-slip and masonry infills interaction on seismic performance of older R/C frame structures. Soil Dynamics and Earthquake Engineering, 109 (2018) 251-265. doi:10.1016/j.soildyn.2018.02.027.

- M.J. Schoettler, J.I. Restrepo, G. Guerrini, D.E. Duck, F. Carrea, A full-scale, single-column bridge bent tested by shake-table excitation. Center for Civil Engineering Earthquake Research, Department of Civil Engineering, University of Nevada, (2012).

- V. Terzic, M.J. Schoettler, J.I. Restrepo, S.A. Mahin, Concrete Column Blind Prediction Contest 2010: Outcomes and Observations. PEER Report No. 2015/01, Pacific earthquake engineering research center. University of California, Berkeley. (2015).

- M. Schoettler, J. Restrepo, G. Guerrini, D. Duck, F. Carrea, A full-scale, single-column bridge bent tested by shake-table excitation. PEER report 2015/02. Pacific Earthquake Engineering Research Center (PEER). University of California, Berkeley, CA, (2015).

- D.E. Lehman. Seismic performance of well-confined concrete bridge columns. University of California, Berkeley, 1998.

- J. Zhao, S. Sritharan, Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures. ACI Structural Journal, 104(2) (2007) 133. doi:10.14359/18525.

- P.E. Mergos, A.J. Kappos, A gradual spread inelasticity model for R/C beam–columns, accounting for flexure, shear and anchorage slip. Engineering Structures, 44 (2012) 94-106. doi:10.1016/j.engstruct.2012.05.035.

- G. Monti, E. Spacone, Reinforced Concrete Fiber Beam Element with Bond-Slip. Journal of Structural Engineering, 126(6) (2000) 654-661. doi:10.1061/(ASCE)0733-9445(2000)126:6(654).

- C.-L. Lee, F.C. Filippou, Frame Element with Mixed Formulations for Composite and RC Members with Bond Slip. I: Theory and Fixed-End Rotation. Journal of Structural Engineering, 141(11) (2015) 04015039. doi:10.1061/(ASCE)ST.1943-541X.0001273.

- H.-G. Kwak, J.-K. Kim, Implementation of bond-slip effect in analyses of RC frames under cyclic loads using layered section method. Engineering Structures, 28(12) (2006) 1715-1727. doi:10.1016/j.engstruct.2006.03.003.

- W.-H. Pan, M.-X. Tao, J.-G. Nie, Fiber beam–column element model considering reinforcement anchorage slip in the footing. Bulletin of Earthquake Engineering, 15(3) (2017) 991-1018. doi:10.1007/s10518-016-9987-3.

- S. Abtahi, Y. Li, Bond-slip model uncertainty quantification and effect on nonlinear behavior simulations of reinforced concrete columns. Engineering Structures, 266 (2022) 114525. doi:10.1016/j.engstruct.2022.114525.

- F. Braga, R. Gigliotti, M. Laterza, M. D’Amato, S. Kunnath, Modified Steel Bar Model Incorporating Bond-Slip for Seismic Assessment of Concrete Structures. Journal of Structural Engineering, 138(11) (2012) 1342-1350. doi:10.1061/(ASCE)ST.1943-541X.0000587.

- D. Lehman, J. Moehle, S. Mahin, A. Calderone, L. Henry, Experimental Evaluation of the Seismic Performance of Reinforced Concrete Bridge Columns. Journal of Structural Engineering, 130(6) (2004) 869-879. doi:10.1061/(ASCE)0733-9445(2004)130:6(869).

- L. Henry, S. Mahin, Study of buckling of longitudinal bars in reinforced concrete bridge columns. Report to the California department of transportation, (1999).

- T. Paulay, M.N. Priestley, Seismic design of reinforced concrete and masonry buildings. Vol. 768. Wiley New York, 1992.

- F.T. McKenna. Object-oriented finite element programming: frameworks for analysis, algorithms and parallel computing. PhD Thesis. University of California, Berkeley, 1997.

- F. McKenna, G. Fenves, M. Scott, B. Jeremic, Open system for earthquake engineering simulation (OpenSees). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, (2000).

- PEER. Open system for Earthquake Engineering Simulation (OpenSees). (2005); Available from: https://opensees.berkeley.edu/.

- F. Taucer, E. Spacone, F.C. Filippou, A fiber beam-column element for seismic response analysis of reinforced concrete structures. Vol. 91. Earthquake Engineering Research Center, College of Engineering, University …, 1991.

- E. Spacone, F.C. Filippou, F.F. Taucer, Fibre beam–column model for non-linear analysis of R/C frames: part I. Formulation. Earthquake Engineering & Structural Dynamics, 25(7) (1996) 711-725. doi:10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9.

- E. Spacone, F.C. Filippou, F.F. Taucer, Fibre beam–column model for non-linear analysis of R/C frames: part II. Applications. Earthquake Engineering & Structural Dynamics, 25(7) (1996) 727-742. doi:10.1002/(SICI)1096-9845(199607)25:7<727::AID-EQE577>3.0.CO;2-O.

- M.P. Berry, M.O. Eberhard, Performance modeling strategies for modern reinforced concrete bridge. PEER 2007/07, Pacific Earthquake Engineering Research Center College. University of California, Berkeley. (2008).

- J. Coleman, E. Spacone, Localization Issues in Force-Based Frame Elements. Journal of Structural Engineering, 127(11) (2001) 1257-1265. doi:10.1061/(ASCE)0733-9445(2001)127:11(1257).

- A. Calabrese, J.P. Almeida, R. Pinho, Numerical Issues in Distributed Inelasticity Modeling of RC Frame Elements for Seismic Analysis. Journal of Earthquake Engineering, 14(sup1) (2010) 38-68. doi:10.1080/13632461003651869.

- M.M. Kashani, L.N. Lowes, A.J. Crewe, N.A. Alexander, Nonlinear fibre element modelling of RC bridge piers considering inelastic buckling of reinforcement. Engineering Structures, 116 (2016) 163-177. doi:10.1016/j.engstruct.2016.02.051.

- H. Bouazza, M. Djelil, M. Matallah, On the relevance of incorporating bar slip, bar buckling and low-cycle fatigue effects in seismic fragility assessment of RC bridge piers. Engineering Structures, 256 (2022) 114032. doi:10.1016/j.engstruct.2022.114032.

- S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, OpenSees command language manual. Pacific earthquake engineering research (PEER) center, 264(1) (2006) 137-158.

- S. Popovics, A numerical approach to the complete stress-strain curve of concrete. Cement and Concrete Research, 3(5) (1973) 583-599. doi:10.1016/0008-8846(73)90096-3.

- I.D. Karsan, J.O. Jirsa, Behavior of Concrete Under Compressive Loadings. Journal of the Structural Division, 95(12) (1969) 2543-2564. doi:10.1061/JSDEAG.0002424.

- J.B. Mander, M.J.N. Priestley, R. Park, Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8) (1988) 1804-1826. doi:10.1061/(ASCE)0733-9445(1988)114:8(1804).

- F.E. Richart, Study of the failure of concrete under combined compressive stresses. University of Illinois Engineering Experimental Station, Bulletin, 185 (1928) 104.

- S.K. Kunnath, Y. Heo, J.F. Mohle, Nonlinear Uniaxial Material Model for Reinforcing Steel Bars. Journal of Structural Engineering, 135(4) (2009) 335-343. doi:10.1061/(ASCE)0733-9445(2009)135:4(335).

- C.E.-I.d. Béton, CEB-FIP model code 1990: Design code. Thomas Telford Publishing, 1993.

- M. Berry, M. Parrish, M. Eberhard, PEER structural performance database user’s manual (version 1.0). Pacific Earthquake Engineering Research Center. University of California, Berkeley, (2004).

- F. McKenna, G.L. Fenves, M.H. Scott, OpenSees: Open system for earthquake engineering simulation. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA., http://opensees.berkeley.edu, (2006).


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.