Appropriate sample size and effects of microscopic parameters on the shear strength and strain localisation of 2D cohesive-frictional granular assemblies

Kien Trung NGUYEN, Trung Thanh VO, Hoang Nhu NGUYEN

Abstract


Granular materials are made up of smaller particles, manifestation of microstructure results in a macroscopic response of granular material. Understanding the overall mechanical behaviour from microscopic parameters is one of the main challenges in many engineering fields including civil engineering. When modelling this kind of material by Discrete Element Model (DEM) using idealized circular grains, the effects of appropriate sample size and microscopic parameter changes have been a crucial subject. Previous research has primarily relied on the case of purely frictional granular materials. In this paper, we use DEM to investigate the appropriate sample size and the relationship between microscopic parameters and the macroscopic responses of cohesive-frictional granular assemblies by performing a series of biaxial tests. Our findings indicate that a minimum number of particles is required to balance between mechanical behaviour and computing time. In addition, through extensive parametric studies, the paper explores the impact of factors such as interparticle bonds, intergranular friction coefficients, and initial void index on the overall shear behaviour of granular assemblies. Also, the result reveals a strong correlation between shear band formation and the break field of cohesive contact (static variable) and the translations and rotations of grains (kinematic variable).

Keywords


DEM Granular materials; Microscopic effects; Strain localisation

Full Text:

PDF

References


- T.-K. Nguyen, J. Desrues, T.-T. Vo, G. Combe, FEM×DEM multi-scale model for cemented granular materials: Inter- and intra-granular cracking induced strain localisation. International Journal for Numerical and Analytical Methods in Geomechanics, 46(5) (2022) 1001-1025. doi:10.1002/nag.3332.

- T.-T. Vo, C.T. Nguyen, T.-K. Nguyen, V.M. Nguyen, T.L. Vu, Impact dynamics and power-law scaling behavior of wet agglomerates. Computational Particle Mechanics, 9(3) (2022) 537-550. doi:10.1007/s40571-021-00427-9.

- H. Wu, A. Papazoglou, G. Viggiani, C. Dano, J. Zhao, Compaction bands in Tuffeau de Maastricht: insights from X-ray tomography and multiscale modeling. Acta Geotechnica, 15(1) (2020) 39-55. doi:10.1007/s11440-019-00904-9.

- J. Zhao, N. Guo, The interplay between anisotropy and strain localisation in granular soils: a multiscale insight. Géotechnique, 65(8) (2015) 642-656. doi:10.1680/geot.14.P.184.

- D. Mašín, C. Tamagnini, G. Viggiani, D. Costanzo, Directional response of a reconstituted fine-grained soil—Part II: performance of different constitutive models. International Journal for Numerical and Analytical Methods in Geomechanics, 30(13) (2006) 1303-1336. doi:https://doi.org/10.1002/nag.527.

- J. Fonseca, P. Bésuelle, G. Viggiani, Micromechanisms of inelastic deformation in sandstones: an insight using x-ray micro-tomography. Géotechnique Letters, 3(2) (2013) 78-83. doi:10.1680/geolett.13.034.

- A.P. van den Eijnden, P. Bésuelle, F. Collin, R. Chambon, J. Desrues, Modeling the strain localization around an underground gallery with a hydro-mechanical double scale model; effect of anisotropy. Computers and Geotechnics, 85 (2017) 384-400. doi:10.1016/j.compgeo.2016.08.006.

- F.A. Gilabert, J.N. Roux, A. Castellanos, Computer simulation of model cohesive powders: Influence of assembling procedure and contact laws on low consolidation states. Physical Review E, 75(1) (2007) 011303. doi:10.1103/PhysRevE.75.011303.

- C. Liu, Q. Sun, F. Jin, G.G.D. Zhou, A fully coupled hydro-mechanical material point method for saturated dense granular materials. Powder Technology, 314 (2017) 110-120. doi:10.1016/j.powtec.2017.02.022.

- H.H. Bui, G.D. Nguyen, Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media. Computers and Geotechnics, 138 (2021) 104315. doi:10.1016/j.compgeo.2021.104315.

- N. Li, B. Ma, H. Wang, W. Sun, Development of elasto-plastic constitutive model for unbound granular materials under repeated loads. Transportation Geotechnics, 23 (2020) 100347. doi:10.1016/j.trgeo.2020.100347.

- P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies. Géotechnique, 29(1) (1979) 47-65. doi:10.1680/geot.1979.29.1.47.

- R.K. Pal, R.B. de Macedo, J.E. Andrade, Tunnel excavation in granular media: the role of force chains. Granular Matter, 23(4) (2021) 76. doi:10.1007/s10035-021-01141-2.

- H. Tang, Y. Dong, X. Chu, X. Zhang, The influence of particle rolling and imperfections on the formation of shear bands in granular material. Granular Matter, 18(1) (2016) 12. doi:10.1007/s10035-016-0607-3.

- M.J. Jiang, H.S. Yu, D. Harris, Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8) (2006) 723-761. doi:10.1002/nag.498.

- T.-K. Nguyen, T.-T. Vo, N.-H. Nguyen, Discrete-element modeling of strain localization in a dense and highly coordinated periodic granular assembly. Frattura e Integrita Strutturale, (59) (2022) 188-197. doi:10.3221/IGF-ESIS.59.14.

- B. Chareyre. Discrete element modeling of composites soil-geosynthetics structures: application to trench anchorages at the top of slopes. Université Joseph-Fourier - Grenoble I, 2003.

- T.K. Nguyen. Multi-scale modeling of cohesive-frictional granular materials. Université de Grenoble, 2013.

- M.R. Kuhn, K. Bagi, Specimen Size Effect in Discrete Element Simulations of Granular Assemblies. Journal of Engineering Mechanics, 135(6) (2009) 485-492. doi:10.1061/(ASCE)0733-9399(2009)135:6(485).

- S. Mohammadi, H. Taiebat, Finite element simulation of an excavation-triggered landslide using large deformation theory. Engineering Geology, 205 (2016) 62-72. doi:10.1016/j.enggeo.2016.02.012.

- N. Guo, L.F. Chen, Z.X. Yang, Multiscale modelling and analysis of footing resting on an anisotropic sand. Géotechnique, 72(4) (2022) 364-376. doi:10.1680/jgeot.20.P.306.

- T.K. Nguyen, A. Argilaga, D. Caillerie, G. Combe, S. Dal Pont, J. Desrues, V. Richefeu, FEMxDEM: a new efficient multi-scale approach for geotechnical problems with strain localization, EDP Sciences. (2017). doi:10.1051/epjconf/201714011007.

- F. Salehnia, F. Collin, X.L. Li, A. Dizier, X. Sillen, R. Charlier, Coupled modeling of Excavation Damaged Zone in Boom clay: Strain localization in rock and distribution of contact pressure on the gallery’s lining. Computers and Geotechnics, 69 (2015) 396-410. doi:10.1016/j.compgeo.2015.06.003.

- T.K. Nguyen, G. Combe, D. Caillerie, J. Desrues, FEM × DEM modelling of cohesive granular materials: Numerical homogenisation and multi-scale simulations. Acta Geophysica, 62(5) (2014) 1109-1126. doi:10.2478/s11600-014-0228-3.

- J. Desrues, E. Andò, F.A. Mevoli, L. Debove, G. Viggiani, How does strain localise in standard triaxial tests on sand: Revisiting the mechanism 20 years on. Mechanics Research Communications, 92 (2018) 142-146. doi:10.1016/j.mechrescom.2018.08.007.

- J. Desrues, G. Viggiani, Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. International Journal for Numerical and Analytical Methods in Geomechanics, 28(4) (2004) 279-321. doi:10.1002/nag.338.

- W. Wang, J. Pan, F. Jin, Mechanical Behavior of Cemented Granular Aggregates under Uniaxial Compression. Journal of Materials in Civil Engineering, 31(5) (2019) 04019047. doi:10.1061/(ASCE)MT.1943-5533.0002681.

- T.K. Nguyen, G. Combe, D. Caillerie, J. Desrues, Modeling of a cohesive granular materials by a multi-scale approach. AIP Conference Proceedings, 1542(1) (2013) 1194-1197. doi:10.1063/1.4812151.

- G. Combe, J.-N. Roux, Discrete numerical simulation, quasistatic deformation and the origins of strain in granular materials, in Third international symposium on deformation characteristics of geomaterials Lyon, France. (2003). doi:10.48550/arXiv.0901.3842.

- T.-K. Nguyen. On the Representative Volume Element of Dense Granular Assemblies Made of 2D Circular Particles. Singapore: Springer Singapore. (2021), 499-508. doi:10.1007/978-981-16-0945-9_41.

- F. Radjai, Multi-periodic boundary conditions and the Contact Dynamics method. Comptes Rendus Mécanique, 346(3) (2018) 263-277. doi:10.1016/j.crme.2017.12.007.

- Cegeo, B. Saint-Cyr, K. Szarf, C. Voivret, E. Azéma, V. Richefeu, J.Y. Delenne, G. Combe, C. Nouguier-Lehon, P. Villard, P. Sornay, M. Chaze, F. Radjai, Particle shape dependence in 2D granular media. Europhysics Letters, 98(4) (2012) 44008. doi:10.1209/0295-5075/98/44008.

- G. Mollon, A. Quacquarelli, E. Andò, G. Viggiani, Can friction replace roughness in the numerical simulation of granular materials? Granular Matter, 22(2) (2020) 42. doi:10.1007/s10035-020-1004-5.

- J. Desrues, R. Chambon, M. Mokni, F. Mazerolle, Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique, 46(3) (1996) 529-546. doi:10.1680/geot.1996.46.3.529.

- Y. Gao, Q. Chen, Q. Yuan, Y.-H. Wang, The kinematics and micro mechanism of creep in sand based on DEM simulations. Computers and Geotechnics, 153 (2023) 105082. doi:10.1016/j.compgeo.2022.105082.

- K. Bagi, Stress and strain in granular assemblies. Mechanics of Materials, 22(3) (1996) 165-177. doi:10.1016/0167-6636(95)00044-5.

- E. Andò, G. Viggiani, J. Desrues, X-Ray Tomography Experiments on Sand at Different Scales, in Views on Microstructures in Granular Materials, P. Giovine, P.M. Mariano, G. Mortara, Editors. Springer International Publishing: Cham. (2020), 1-20. doi:10.1007/978-3-030-49267-0_1.

- D. Lu, H. Dong, Q. Lin, C. Guo, Z. Gao, X. Du, A method for characterizing the deformation localization in granular materials using the relative particle motion. Computers and Geotechnics, 156 (2023) 105262. doi:10.1016/j.compgeo.2023.105262.

- J. Desrues, R. Chambon, Shear band analysis and shear moduli calibration. International Journal of Solids and Structures, 39(13) (2002) 3757-3776. doi:10.1016/S0020-7683(02)00177-4.

- M. Jiang, W. Zhang, Y. Sun, S. Utili, An investigation on loose cemented granular materials via DEM analyses. Granular Matter, 15(1) (2013) 65-84. doi:10.1007/s10035-012-0382-8.

- P. Bésuelle, J. Desrues, S. Raynaud, Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. International Journal of Rock Mechanics and Mining Sciences, 37(8) (2000) 1223-1237. doi:10.1016/S1365-1609(00)00057-5.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.