Appropriate sample size and effects of microscopic parameters on the shear strength and strain localisation of 2D cohesive-frictional granular assemblies
Abstract
Keywords
Full Text:
PDFReferences
- T.-K. Nguyen, J. Desrues, T.-T. Vo, G. Combe, FEM×DEM multi-scale model for cemented granular materials: Inter- and intra-granular cracking induced strain localisation. International Journal for Numerical and Analytical Methods in Geomechanics, 46(5) (2022) 1001-1025. doi:10.1002/nag.3332.
- T.-T. Vo, C.T. Nguyen, T.-K. Nguyen, V.M. Nguyen, T.L. Vu, Impact dynamics and power-law scaling behavior of wet agglomerates. Computational Particle Mechanics, 9(3) (2022) 537-550. doi:10.1007/s40571-021-00427-9.
- H. Wu, A. Papazoglou, G. Viggiani, C. Dano, J. Zhao, Compaction bands in Tuffeau de Maastricht: insights from X-ray tomography and multiscale modeling. Acta Geotechnica, 15(1) (2020) 39-55. doi:10.1007/s11440-019-00904-9.
- J. Zhao, N. Guo, The interplay between anisotropy and strain localisation in granular soils: a multiscale insight. Géotechnique, 65(8) (2015) 642-656. doi:10.1680/geot.14.P.184.
- D. Mašín, C. Tamagnini, G. Viggiani, D. Costanzo, Directional response of a reconstituted fine-grained soil—Part II: performance of different constitutive models. International Journal for Numerical and Analytical Methods in Geomechanics, 30(13) (2006) 1303-1336. doi:https://doi.org/10.1002/nag.527.
- J. Fonseca, P. Bésuelle, G. Viggiani, Micromechanisms of inelastic deformation in sandstones: an insight using x-ray micro-tomography. Géotechnique Letters, 3(2) (2013) 78-83. doi:10.1680/geolett.13.034.
- A.P. van den Eijnden, P. Bésuelle, F. Collin, R. Chambon, J. Desrues, Modeling the strain localization around an underground gallery with a hydro-mechanical double scale model; effect of anisotropy. Computers and Geotechnics, 85 (2017) 384-400. doi:10.1016/j.compgeo.2016.08.006.
- F.A. Gilabert, J.N. Roux, A. Castellanos, Computer simulation of model cohesive powders: Influence of assembling procedure and contact laws on low consolidation states. Physical Review E, 75(1) (2007) 011303. doi:10.1103/PhysRevE.75.011303.
- C. Liu, Q. Sun, F. Jin, G.G.D. Zhou, A fully coupled hydro-mechanical material point method for saturated dense granular materials. Powder Technology, 314 (2017) 110-120. doi:10.1016/j.powtec.2017.02.022.
- H.H. Bui, G.D. Nguyen, Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media. Computers and Geotechnics, 138 (2021) 104315. doi:10.1016/j.compgeo.2021.104315.
- N. Li, B. Ma, H. Wang, W. Sun, Development of elasto-plastic constitutive model for unbound granular materials under repeated loads. Transportation Geotechnics, 23 (2020) 100347. doi:10.1016/j.trgeo.2020.100347.
- P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies. Géotechnique, 29(1) (1979) 47-65. doi:10.1680/geot.1979.29.1.47.
- R.K. Pal, R.B. de Macedo, J.E. Andrade, Tunnel excavation in granular media: the role of force chains. Granular Matter, 23(4) (2021) 76. doi:10.1007/s10035-021-01141-2.
- H. Tang, Y. Dong, X. Chu, X. Zhang, The influence of particle rolling and imperfections on the formation of shear bands in granular material. Granular Matter, 18(1) (2016) 12. doi:10.1007/s10035-016-0607-3.
- M.J. Jiang, H.S. Yu, D. Harris, Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8) (2006) 723-761. doi:10.1002/nag.498.
- T.-K. Nguyen, T.-T. Vo, N.-H. Nguyen, Discrete-element modeling of strain localization in a dense and highly coordinated periodic granular assembly. Frattura e Integrita Strutturale, (59) (2022) 188-197. doi:10.3221/IGF-ESIS.59.14.
- B. Chareyre. Discrete element modeling of composites soil-geosynthetics structures: application to trench anchorages at the top of slopes. Université Joseph-Fourier - Grenoble I, 2003.
- T.K. Nguyen. Multi-scale modeling of cohesive-frictional granular materials. Université de Grenoble, 2013.
- M.R. Kuhn, K. Bagi, Specimen Size Effect in Discrete Element Simulations of Granular Assemblies. Journal of Engineering Mechanics, 135(6) (2009) 485-492. doi:10.1061/(ASCE)0733-9399(2009)135:6(485).
- S. Mohammadi, H. Taiebat, Finite element simulation of an excavation-triggered landslide using large deformation theory. Engineering Geology, 205 (2016) 62-72. doi:10.1016/j.enggeo.2016.02.012.
- N. Guo, L.F. Chen, Z.X. Yang, Multiscale modelling and analysis of footing resting on an anisotropic sand. Géotechnique, 72(4) (2022) 364-376. doi:10.1680/jgeot.20.P.306.
- T.K. Nguyen, A. Argilaga, D. Caillerie, G. Combe, S. Dal Pont, J. Desrues, V. Richefeu, FEMxDEM: a new efficient multi-scale approach for geotechnical problems with strain localization, EDP Sciences. (2017). doi:10.1051/epjconf/201714011007.
- F. Salehnia, F. Collin, X.L. Li, A. Dizier, X. Sillen, R. Charlier, Coupled modeling of Excavation Damaged Zone in Boom clay: Strain localization in rock and distribution of contact pressure on the gallery’s lining. Computers and Geotechnics, 69 (2015) 396-410. doi:10.1016/j.compgeo.2015.06.003.
- T.K. Nguyen, G. Combe, D. Caillerie, J. Desrues, FEM × DEM modelling of cohesive granular materials: Numerical homogenisation and multi-scale simulations. Acta Geophysica, 62(5) (2014) 1109-1126. doi:10.2478/s11600-014-0228-3.
- J. Desrues, E. Andò, F.A. Mevoli, L. Debove, G. Viggiani, How does strain localise in standard triaxial tests on sand: Revisiting the mechanism 20 years on. Mechanics Research Communications, 92 (2018) 142-146. doi:10.1016/j.mechrescom.2018.08.007.
- J. Desrues, G. Viggiani, Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. International Journal for Numerical and Analytical Methods in Geomechanics, 28(4) (2004) 279-321. doi:10.1002/nag.338.
- W. Wang, J. Pan, F. Jin, Mechanical Behavior of Cemented Granular Aggregates under Uniaxial Compression. Journal of Materials in Civil Engineering, 31(5) (2019) 04019047. doi:10.1061/(ASCE)MT.1943-5533.0002681.
- T.K. Nguyen, G. Combe, D. Caillerie, J. Desrues, Modeling of a cohesive granular materials by a multi-scale approach. AIP Conference Proceedings, 1542(1) (2013) 1194-1197. doi:10.1063/1.4812151.
- G. Combe, J.-N. Roux, Discrete numerical simulation, quasistatic deformation and the origins of strain in granular materials, in Third international symposium on deformation characteristics of geomaterials Lyon, France. (2003). doi:10.48550/arXiv.0901.3842.
- T.-K. Nguyen. On the Representative Volume Element of Dense Granular Assemblies Made of 2D Circular Particles. Singapore: Springer Singapore. (2021), 499-508. doi:10.1007/978-981-16-0945-9_41.
- F. Radjai, Multi-periodic boundary conditions and the Contact Dynamics method. Comptes Rendus Mécanique, 346(3) (2018) 263-277. doi:10.1016/j.crme.2017.12.007.
- Cegeo, B. Saint-Cyr, K. Szarf, C. Voivret, E. Azéma, V. Richefeu, J.Y. Delenne, G. Combe, C. Nouguier-Lehon, P. Villard, P. Sornay, M. Chaze, F. Radjai, Particle shape dependence in 2D granular media. Europhysics Letters, 98(4) (2012) 44008. doi:10.1209/0295-5075/98/44008.
- G. Mollon, A. Quacquarelli, E. Andò, G. Viggiani, Can friction replace roughness in the numerical simulation of granular materials? Granular Matter, 22(2) (2020) 42. doi:10.1007/s10035-020-1004-5.
- J. Desrues, R. Chambon, M. Mokni, F. Mazerolle, Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique, 46(3) (1996) 529-546. doi:10.1680/geot.1996.46.3.529.
- Y. Gao, Q. Chen, Q. Yuan, Y.-H. Wang, The kinematics and micro mechanism of creep in sand based on DEM simulations. Computers and Geotechnics, 153 (2023) 105082. doi:10.1016/j.compgeo.2022.105082.
- K. Bagi, Stress and strain in granular assemblies. Mechanics of Materials, 22(3) (1996) 165-177. doi:10.1016/0167-6636(95)00044-5.
- E. Andò, G. Viggiani, J. Desrues, X-Ray Tomography Experiments on Sand at Different Scales, in Views on Microstructures in Granular Materials, P. Giovine, P.M. Mariano, G. Mortara, Editors. Springer International Publishing: Cham. (2020), 1-20. doi:10.1007/978-3-030-49267-0_1.
- D. Lu, H. Dong, Q. Lin, C. Guo, Z. Gao, X. Du, A method for characterizing the deformation localization in granular materials using the relative particle motion. Computers and Geotechnics, 156 (2023) 105262. doi:10.1016/j.compgeo.2023.105262.
- J. Desrues, R. Chambon, Shear band analysis and shear moduli calibration. International Journal of Solids and Structures, 39(13) (2002) 3757-3776. doi:10.1016/S0020-7683(02)00177-4.
- M. Jiang, W. Zhang, Y. Sun, S. Utili, An investigation on loose cemented granular materials via DEM analyses. Granular Matter, 15(1) (2013) 65-84. doi:10.1007/s10035-012-0382-8.
- P. Bésuelle, J. Desrues, S. Raynaud, Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. International Journal of Rock Mechanics and Mining Sciences, 37(8) (2000) 1223-1237. doi:10.1016/S1365-1609(00)00057-5.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN 2170-127X
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.