Approximation solution for steel concrete beam accounting high-order shear deformation using trigonometric-series

Hien Duy TA, Khoa Tan NGUYEN, Tien Dao NGOC, Hang Thi DO, Tung Xuan NGUYEN, Diem Dang NGUYEN


Steel concrete beams have a reasonable structure in terms of using material and high load carrying capacity. This paper deals with an approximate solution based on a trigonometric series for the static of steel concrete beams. The displacement field is based on the higher-order theory using Reddy’s hypothesis. The governing equations are derived from variation principles. An approximate solution based on the representation of displacement fields by trigonometric series is developed to solve the static problem of steel concrete beams. In order to verify the accuracy of the present approximate solution, numerical results are compared with those of exact solutions using classical beam theory. The displacements and nominal stress distributions in the depth direction are obtained with various high of beams. The present approximate approach can accurately predict the displacements and stresses of steel concrete beams.


Steel concrete beam; Spproximate solution; Higher-order beam; Trigonometric series

Full Text:



- V.P. Phe, X.N. Huy, An analytical solution for FRP-strengthened beams under load and thermal effects. Transp. Com. Sci. J. 71(2) (2020) 80-90. doi:10.25073/tcsj.71.2.3.

- Y.C. Wang, Deflection of Steel-Concrete Composite Beams with Partial Shear Interaction. J. Struct. Eng., 124(10) (1998) 1159-1165. doi:10.1061/(ASCE)0733-9445(1998)124:10(1159).

- T. Chen, X. Gu, H. Li, Behavior of steel-concrete composite cantilever beams with web openings under negative moment. Int. J. Steel Str., 11(1) (2011) 39-49. doi:10.1007/S13296-011-1004-8.

- J.L.P. Tamayo, I.B. Morsch, A.M. Awruch, Short-time numerical analysis of steel–concrete composite beams. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(4) (2015) 1097-1109. doi:10.1007/s40430-014-0237-9.

- P.V. Pham, M. Mohareb, A. Fam, Shear deformable super-convergent finite element for steel beams strengthened with glass-fiber reinforced polymer (GFRP) plate. Can J Civ Eng, 46(4) (2019) 338-351. doi:10.1139/cjce-2018-0259.

- J. Sliseris, A. Korjakins, Numerical Modeling of the Casting Process and Impact Loading of a Steel-Fiber-Reinforced High-Performance Self-Compacting Concrete. Mech. Compos. Mater., 55(1) (2019) 29-40. doi:10.1007/s11029-019-09789-x.

- P. Sunar Bükülmez, O.C. Celik, Experimental Study on Fire Behavior of Steel–Concrete Composite Cellular Beams with Large Opening Ratio. Int. J. Steel Str., 20(1) (2020) 207-231. doi:10.1007/s13296-019-00281-9.

- A.M. Mahmoud, Finite element modeling of steel concrete beam considering double composite action. Ain Shams Eng. J., 7(1) (2016) 73-88. doi:10.1016/j.asej.2015.03.012.

- S.P. Timoshenko, Strength of materials. New Delhi: CBS Publishers & Distributors, 2004.

- I. Elishakoff, Who developed the so-called Timoshenko beam theory? Mathematics and Mechanics of Solids, 25(1) (2020) 97-116. doi:10.1177/1081286519856931.

- J.N. Reddy, Mechanics of laminated composite plates and shells : theory and analysis. 2nd ed. Boca Raton: CRC Press. xxiii, 831 p., 2004.

- L.T. Ha, N.T.K. Khue, Free vibration of functionally graded porous nano beams. Transp. Commun. Sci. J., 70(2) (2019) 95-103. doi:10.25073/tcsj.70.2.32.

- N.T. Nhung, T.D. Hien, N.V. Thuan, D.N. Tien, Stochastic finite element analysis of the free vibration of non-uniform beams with uncertain material. J. Mat. Eng. Str. «JMES», 9(1) (2022) 29-37.

- G. Ranzi, A. Zona, A steel–concrete composite beam model with partial interaction including the shear deformability of the steel component. Eng. Struct., 29(11) (2007) 3026-3041. doi:10.1016/j.engstruct.2007.02.007.

- A. Özütok, E. Madenci, Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method. Int. J. Mech. Sci., 130 (2017) 234-243. doi:10.1016/j.ijmecsci.2017.06.013.

- T.D. Hien, B.T. Thanh, N.N. Long, N. Van Thuan, D.T. Hang. Investigation into the response variability of a higher-order beam resting on a foundation using a stochastic finite element method. in CIGOS 2019, Innovation for Sustainable Infrastructure. Ha Noi: Springer. (2020), 117-122.

- P.B. Thang, L.V. Anh, Structural analysis of steel-concrete composite beam bridges utilizing the shear connection model. Transp. Commun. Sci. J., 72(7) (2021) 811-823. doi:10.47869/tcsj.72.7.4.

- F. Gara, S. Carbonari, G. Leoni, L. Dezi, A higher order steel–concrete composite beam model. Eng. Struct., 80 (2014) 260-273. doi:10.1016/j.engstruct.2014.09.002.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at