Approximation solution for steel concrete beam accounting high-order shear deformation using trigonometric-series
Abstract
Keywords
Full Text:
PDFReferences
- V.P. Phe, X.N. Huy, An analytical solution for FRP-strengthened beams under load and thermal effects. Transp. Com. Sci. J. 71(2) (2020) 80-90. doi:10.25073/tcsj.71.2.3.
- Y.C. Wang, Deflection of Steel-Concrete Composite Beams with Partial Shear Interaction. J. Struct. Eng., 124(10) (1998) 1159-1165. doi:10.1061/(ASCE)0733-9445(1998)124:10(1159).
- T. Chen, X. Gu, H. Li, Behavior of steel-concrete composite cantilever beams with web openings under negative moment. Int. J. Steel Str., 11(1) (2011) 39-49. doi:10.1007/S13296-011-1004-8.
- J.L.P. Tamayo, I.B. Morsch, A.M. Awruch, Short-time numerical analysis of steel–concrete composite beams. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(4) (2015) 1097-1109. doi:10.1007/s40430-014-0237-9.
- P.V. Pham, M. Mohareb, A. Fam, Shear deformable super-convergent finite element for steel beams strengthened with glass-fiber reinforced polymer (GFRP) plate. Can J Civ Eng, 46(4) (2019) 338-351. doi:10.1139/cjce-2018-0259.
- J. Sliseris, A. Korjakins, Numerical Modeling of the Casting Process and Impact Loading of a Steel-Fiber-Reinforced High-Performance Self-Compacting Concrete. Mech. Compos. Mater., 55(1) (2019) 29-40. doi:10.1007/s11029-019-09789-x.
- P. Sunar Bükülmez, O.C. Celik, Experimental Study on Fire Behavior of Steel–Concrete Composite Cellular Beams with Large Opening Ratio. Int. J. Steel Str., 20(1) (2020) 207-231. doi:10.1007/s13296-019-00281-9.
- A.M. Mahmoud, Finite element modeling of steel concrete beam considering double composite action. Ain Shams Eng. J., 7(1) (2016) 73-88. doi:10.1016/j.asej.2015.03.012.
- S.P. Timoshenko, Strength of materials. New Delhi: CBS Publishers & Distributors, 2004.
- I. Elishakoff, Who developed the so-called Timoshenko beam theory? Mathematics and Mechanics of Solids, 25(1) (2020) 97-116. doi:10.1177/1081286519856931.
- J.N. Reddy, Mechanics of laminated composite plates and shells : theory and analysis. 2nd ed. Boca Raton: CRC Press. xxiii, 831 p., 2004.
- L.T. Ha, N.T.K. Khue, Free vibration of functionally graded porous nano beams. Transp. Commun. Sci. J., 70(2) (2019) 95-103. doi:10.25073/tcsj.70.2.32.
- N.T. Nhung, T.D. Hien, N.V. Thuan, D.N. Tien, Stochastic finite element analysis of the free vibration of non-uniform beams with uncertain material. J. Mat. Eng. Str. «JMES», 9(1) (2022) 29-37.
- G. Ranzi, A. Zona, A steel–concrete composite beam model with partial interaction including the shear deformability of the steel component. Eng. Struct., 29(11) (2007) 3026-3041. doi:10.1016/j.engstruct.2007.02.007.
- A. Özütok, E. Madenci, Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method. Int. J. Mech. Sci., 130 (2017) 234-243. doi:10.1016/j.ijmecsci.2017.06.013.
- T.D. Hien, B.T. Thanh, N.N. Long, N. Van Thuan, D.T. Hang. Investigation into the response variability of a higher-order beam resting on a foundation using a stochastic finite element method. in CIGOS 2019, Innovation for Sustainable Infrastructure. Ha Noi: Springer. (2020), 117-122.
- P.B. Thang, L.V. Anh, Structural analysis of steel-concrete composite beam bridges utilizing the shear connection model. Transp. Commun. Sci. J., 72(7) (2021) 811-823. doi:10.47869/tcsj.72.7.4.
- F. Gara, S. Carbonari, G. Leoni, L. Dezi, A higher order steel–concrete composite beam model. Eng. Struct., 80 (2014) 260-273. doi:10.1016/j.engstruct.2014.09.002.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN 2170-127X
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.