Self-healing Coal fly ash Construction Brick for CO2 and Dust Adsorption

Fayza Shemsu KEDIR, Kalid Ahmed SEID, Olu Emmanuel FEMI, Mengistu Jemberu DAGNAW, Arpan ROUT


As a common byproduct of thermal power plants, coal fly ash (CFA) is often dumped in landfills, where it can cause environmental damage. As a result, in this work, porous construction bricks were made utilizing a byproduct of a thermal power plant, coal fly ash, and baking yeast to absorb carbon dioxide and dust. Yeast was utilized for pore formation, CFA detoxifying, and crack repair. The physical properties of prepared porous bricks are characterized using .X-ray diffraction (XRD), scanning electron microscopy (SEM), confocal microscopy (CM), and Fourier transform infrared spectroscopy (FTIR) According to the XRD analysis, the brick is made up of quartz, hematite, and mullite. The Porous Brick absorbed 36% of water and 2.5% of dust. The porous fly ash brick has demonstrated superior strength (17.5MPa) and load bearing capacity as compared to traditional bricks in compressive testing. For analysis of the fly ash bricks' ability to absorb carbon dioxide, a gas chromatograph equipped with a Flame Ionization Detector (FID) was utilized. A high adsorption capability of 94.69 percent of CO2 was found for the produced geopolymer bricks. The yeast involvement promote and facilitates the self-healing ability of the coal flay ash brick (CFB).


Coal fly ash; Yeast; Porous fly ash brick; Geopolymer

Full Text:



- S. Wang, C. Zhang, J. Chen, Utilization of Coal Fly Ash for the Production of Glass-ceramics With Unique Performances: A Brief Review. Journal of Materials Science & Technology, 30(12) (2014) 1208-1212. doi:10.1016/j.jmst.2014.10.005.

- M. Basu, M. Pande, P.B.S. Bhadoria, S.C. Mahapatra, Potential fly-ash utilization in agriculture: A global review. Progress in Natural Science, 19(10) (2009) 1173-1186. doi:10.1016/j.pnsc.2008.12.006.

- S. Sushil, V.S. Batra, Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85(17) (2006) 2676-2679. doi:10.1016/j.fuel.2006.04.031.

- M.C. Miod. The determination of heavy metals in coal ash. Doctoral dissertation. Universiti Malaysia Sarawak, 2008.

- M. Minelli, V. Medri, E. Papa, F. Miccio, E. Landi, F. Doghieri, Geopolymers as solid adsorbent for CO2 capture. Chemical Engineering Science, 148 (2016) 267-274. doi:10.1016/j.ces.2016.04.013.

- P. Madejski, K. Chmiel, N. Subramanian, T. Kuś, Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies, 15(3) (2022) 887. doi:10.3390/en15030887.

- A.L. Freire, C.D. Moura-Nickel, G. Scaratti, A. De Rossi, M.H. Araújo, A. De Noni Júnior, A.E. Rodrigues, E.R. Castellón, R. de Fátima Peralta Muniz Moreira, Geopolymers produced with fly ash and rice husk ash applied to CO2 capture. Journal of Cleaner Production, 273 (2020) 122917. doi:10.1016/j.jclepro.2020.122917.

- A. Mazzella, M. Errico, D. Spiga, CO2 uptake capacity of coal fly ash: Influence of pressure and temperature on direct gas-solid carbonation. Journal of Environmental Chemical Engineering, 4(4, Part A) (2016) 4120-4128. doi:10.1016/j.jece.2016.09.020.

- C. Siriruang, P. Toochinda, P. Julnipitawong, S. Tangtermsirikul, CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete. Journal of Environmental Management, 170 (2016) 70-78. doi:10.1016/j.jenvman.2016.01.010.

- M. Chester, A. Nataatmadja, S. Fragomeni. Lightweight bricks from fly ash. in Proceedings of the 9th canadian masonry symposium. (2001), 4-6.

- N. Michailidis, A. Tsouknidas, L.-P. Lefebvre, T. Hipke, N. Kanetake, Production, Characterization, and Applications of Porous Materials. Advances in Materials Science and Engineering, 2014 (2014) 263129. doi:10.1155/2014/263129.

- C. Bories, M.-E. Borredon, E. Vedrenne, G. Vilarem, Development of eco-friendly porous fired clay bricks using pore-forming agents: A review. Journal of Environmental Management, 143 (2014) 186-196. doi:10.1016/j.jenvman.2014.05.006.

- M. XU GG, H. CUI, Preparation of porous mullite-corundum ceramics with controlled pore size using bioactive yeast as pore-forming agent. Materials Letters, 116 (2014) 349-352. doi:10.1016/j.matlet.2013.11.067.

- N. Obradović, S. Filipović, J. Rusmirović, G. Postole, A. Marinković, D. Radić, V.M. Rakić, V.B. Pavlović, A. Auroux, Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent. Science of Sintering, 49(3) (2017) 235-246. doi:10.2298/SOS1703235O.

- G. Xu, J. Li, H. Cui, Q. He, Z. Zhang, X. Zhan, Biotemplated fabrication of porous alumina ceramics with controllable pore size using bioactive yeast as pore-forming agent. Ceramics International, 41(5, Part B) (2015) 7042-7047. doi:10.1016/j.ceramint.2015.02.007.

- G.R. Pickrell, Porous ceramic, polymer and metal materials with pores created by biological fermentation, United States Patent. 7,157,115. (2007).

- R.L. Menchavez, L.-A.S. Intong, Red clay-based porous ceramic with pores created by yeast-based foaming technique. Journal of Materials Science, 45(23) (2010) 6511-6520. doi:10.1007/s10853-010-4740-9.

- W. Bahafid, N.T. Joutey, M. Asri, H. Sayel, N. Tirry, N. El Ghachtouli, N. Sayel, Yeast biomass: an alternative for bioremediation of heavy metals. Yeast-Industrial Applications, 559 (2017). doi:10.5772/intechopen.70559.

- J. Wang, C. Chen, Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2) (2009) 195-226. doi:10.1016/j.biotechadv.2008.11.002.

- M. Osumi, Visualization of yeast cells by electron microscopy. Journal of Electron Microscopy, 61(6) (2012) 343-365. doi:10.1093/jmicro/dfs082.

- C.-L. Chen, Y.-C. Chen, W.-L. Huang, S. Lin, R. Daugelavičius, A. Rapoport, C.-R. Chang, A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 22(9) (2021) 4607. doi:10.3390/ijms22094607.

- S. Naganathan, A.Y.O. Mohamed, K.N. Mustapha, Performance of bricks made using fly ash and bottom ash. Construction and Building Materials, 96 (2015) 576-580. doi:10.1016/j.conbuildmat.2015.08.068.

- W. Mozgawa, M. Król, J. Dyczek, J. Deja, Investigation of the coal fly ashes using IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132 (2014) 889-894. doi:10.1016/j.saa.2014.05.052.

- C. ASTM, Standard specification for building brick (solid masonry units made from clay or shale). West Conshohocken, PA, (2012) 19428-2959.

- K. Matziaris, M. Stefanidou, G. Karagiannis, Impregnation and superhydrophobicity of coated porous low-fired clay building materials. Progress in Organic Coatings, 72(1) (2011) 181-192. doi:10.1016/j.porgcoat.2011.03.012.

- Y. Yuan, T.R. Lee, Contact Angle and Wetting Properties, in Surface Science Techniques, G. Bracco, B. Holst, Editors. Springer Berlin Heidelberg: Berlin, Heidelberg. (2013), 3-34. doi:10.1007/978-3-642-34243-1_1.

- W.R. Roy, P.M. Berger, Geochemical controls of coal fly ash leachate pH. Coal Combustion and Gasification Products, 3(4) (2011) 63-66. doi:10.4177/CCGP-D-11-00013.1.

- N. Kuliešienė, R. Žūkienė, G. Khroustalyova, C.-R. Chang, A. Rapoport, R. Daugelavičius, Changes in Energy Status of Saccharomyces cerevisiae Cells during Dehydration and Rehydration. Microorganisms, 9(2) (2021) 444. doi:10.3390/microorganisms9020444.

- R.-P. Boris, C.-G. Didac, L.-M. Gema, R. Angela, B. Maria, M. Frank, C.-O. Ricardo, Yeast Cell Death During the Drying and Rehydration Process, in Flow Cytometry, S. Ingrid, Editor. IntechOpen: Rijeka. (2012), 119-132. doi:10.5772/38016.

- D.M. Jenkins, C.D. Powell, T. Fischborn, K.A. Smart, Rehydration of Active Dry Brewing Yeast and its Effect on Cell Viability. Journal of the Institute of Brewing, 117(3) (2011) 377-382. doi:10.1002/j.2050-0416.2011.tb00482.x.

- S. Abbas, M.A. Saleem, S.M.S. Kazmi, M.J. Munir, Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties. Journal of Building Engineering, 14 (2017) 7-14. doi:10.1016/j.jobe.2017.09.008.

- O. Kayali. High performance bricks from fly ash. in Proceedings of the World of Coal Ash Conference, Lexinton, Kentucky. Lexington, Kentucky, USA (2005).

- A. Bankar, M. Winey, D. Prakash, A.R. Kumar, S. Gosavi, B. Kapadnis, S. Zinjarde, Bioleaching of Fly Ash by the Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589. Applied Biochemistry and Biotechnology, 168(8) (2012) 2205-2217. doi:10.1007/s12010-012-9930-2.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at