Reliability evaluation of 2D semi-rigid steel frames accounting for corrosion effects

Duy-Duan NGUYEN, Trong-Ha NGUYEN


Nowadays, steel frames are widely used in civil and industrial engineering structures. The design process for steel frames with semi-rigid beam-column connections is an interesting topic for designers and researchers. However, the current design codes purely deal with the structural reliability at the pristine and the degradation of steel due to corrosion is not specified. This study proposes a procedure for evaluating the reliability of two-dimensional semi-rigid steel frames considering corrosion effects. A series of Monte Carlo simulations are performed to evaluate the reliability of the corroded steel structures. The random variables including corrosion phenomenon, semi-rigid connection, and applied load, are considered in the proposed method. The safety deterioration of the steel structures due to the corrosion phenomenon until 50 years is obtained. Additionally, the effects of input parameters, which are safety factors and coefficients of variation, on the reliability of structures are examined in the present study. Finally, a verification of this study and previous results is performed, highlighting the capability of the proposed method.



2D steel frame; Semi-rigid connection; Corrosion effect; Reliability analysis

Full Text:



- G.H. Koch, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, Corrosion Cost and Preventive Strategies in the United States. (2002).

- R. Landolfo, L. Cascini, F. Portioli, Modeling of Metal Structure Corrosion Damage: A State of the Art Report. Sustainability, 2(7) (2010) 2163-2175. doi:10.3390/su2072163.

- R. Landolfo, G. Di Lorenzo, M. Guerrieri. Modelling of the damage induced by atmospheric corrosion on 19th century iron structures. in Proceedings of the Italian National Conference on Corrosion and Protection. (2005).

- E. ISO, 9224. Corrosion of metals and alloys: corrosivity of atmospheres: Guiding Values for the Corrosivity Categories. European Committee for Standardization (CEN). Brussels, Belgium, (1992).

- P. Albrecht, T.T. Hall, Atmospheric Corrosion Resistance of Structural Steels. J. Mater. Civ. Eng., 15(1) (2003) 2-24. doi:10.1061/(ASCE)0899-1561(2003)15:1(2).

- D.E. Klinesmith, R.H. McCuen, P. Albrecht, Effect of Environmental Conditions on Corrosion Rates. J. Mater. Civ. Eng., 19(2) (2007) 121-129. doi:10.1061/(ASCE)0899-1561(2007)19:2(121).

- J.R. Kayser, A.S. Nowak, Reliability of corroded steel girder bridges. Struct. Saf., 6(1) (1989) 53-63. doi:10.1016/0167-4730(89)90007-6.

- A.A. Czarnecki, A.S. Nowak, Time-variant reliability profiles for steel girder bridges. Struct. Saf., 30(1) (2008) 49-64. doi:10.1016/j.strusafe.2006.05.002.

- A. Der Kiureghian, Structural reliability methods for seismic safety assessment: a review. Eng. Struct., 18(6) (1996) 412-424. doi:10.1016/0141-0296(95)00005-4.

- R.E. Melchers, The effect of corrosion on the structural reliability of steel offshore structures. Corros. Sci., 47(10) (2005) 2391-2410. doi:10.1016/j.corsci.2005.04.004.

- C. Batho, H. Rowan, Investigations on beam and stanchion connections. Second Report of the Steel Structures Research Committee. London, (1934).

- J.C. Rathbun, Elastic Properties of Riveted Connections. Transactions of the American Society of Civil Engineers, 101(1) (1936) 524-563. doi:10.1061/TACEAT.0004766.

- B. Sourochnikoff, Wind Stresses in Semi-Rigid Connections of Steel Framework. Transactions of the American Society of Civil Engineers, 115(1) (1950) 382-393. doi:10.1061/TACEAT.0006428.

- G.R. Monforton, T.S. Wu, Matrix Analysis of Semi-Rigidly Connected Frames. Journal of the Structural Division, 89(6) (1963) 13-42. doi:10.1061/JSDEAG.0000997.

- M.J. Frye, G.A. Morris, Analysis of Flexibly Connected Steel Frames. Can J Civ Eng, 2(3) (1975) 280-291. doi:10.1139/l75-026.

- W.-F. Chen, E.M. Lui, Effects of joint flexibility on the behavior of steel frames. Comput. Str., 26(5) (1987) 719-732. doi:10.1016/0045-7949(87)90021-6.

- A. Azizinamini, J.B. Radziminski, Static and cyclic performance of semirigid steel beam-to-column connections. J. Struct. Eng., 115(12) (1989) 2979-2999. doi:10.1061/(ASCE)0733-9445(1989)115:12(2979).

- F.-H. Wu, W.-F. Chen, A design model for semi-rigid connections. Eng. Struct., 12(2) (1990) 88-97. doi:10.1016/0141-0296(90)90013-I.

- N. Kishi, W. Chen, Y. Goto, K. Matsuoka, Design aid of semi-rigid connections for frame analysis. Eng. J., 30(3) (1993) 90-107.

- A.S. Elnashai, A.Y. Elghazouli, Seismic behaviour of semi-rigid steel frames. J. Constr. Steel Res., 29(1) (1994) 149-174. doi:10.1016/0143-974X(94)90060-4.

- K.M. Abdalla, W.-F. Chen, Expanded database of semi-rigid steel connections. Comput. Str., 56(4) (1995) 553-564. doi:10.1016/0045-7949(94)00558-K.

- E.M. Lui, A. Lopes, Dynamic analysis and response of semirigid frames. Eng. Struct., 19(8) (1997) 644-654. doi:10.1016/S0141-0296(96)00143-5.

- A.S. Elnashai, A.Y. Elghazouli, F.A. Denesh-Ashtiani, Response of Semirigid Steel Frames to Cyclic and Earthquake Loads. J. Struct. Eng., 124(8) (1998) 857-867. doi:10.1061/(ASCE)0733-9445(1998)124:8(857).

- S.-E. Kim, S.-H. Choi, Practical advanced analysis for semi-rigid space frames. Int. J. Sol. Str., 38(50) (2001) 9111-9131. doi:10.1016/S0020-7683(01)00141-X.

- Y.B. Kwon, H.S. Chung, G.D. Kim, Experiments of Cold-Formed Steel Connections and Portal Frames. J. Struct. Eng., 132(4) (2006) 600-607. doi:10.1061/(ASCE)0733-9445(2006)132:4(600).

- J.-F. Wang, G.-Q. Li, Testing of semi-rigid steel–concrete composite frames subjected to vertical loads. Eng. Struct., 29(8) (2007) 1903-1916. doi:10.1016/j.engstruct.2006.10.014.

- Saravanan, M, J. Arul, S, Marimuthu, V, Prabha, P, Advanced analysis of cyclic behaviour of plane steel frames with semi-rigid connections. Steel Comp. Struc. Int. J., 9 (2009) 381-395. doi:10.12989/scs.2009.9.4.381.

- Y. Liu, L. Xu, D.E. Grierson, Influence of Semi-Rigid Connections and Local Joint Damage on Progressive Collapse of Steel Frameworks. Copmut. Aided Civil Infrastruct. Eng., 25(3) (2010) 184-204. doi:10.1111/j.1467-8667.2009.00616.x.

- M.E. Kartal, H.B. Basaga, A. Bayraktar, M. Muvafık, Effects of Semi-Rigid Connection on Structural Responses. Electron. J. Struct. Eng., 10 (2010) 22-35. doi:10.56748/ejse.10122.

- H.R. Valipour, M.A. Bradford, Nonlinear P-Δ analysis of steel frames with semi-rigid connections. Steel Comp. Struc. Int. J., 14(1) (2013) 1-20. doi:10.12989/scs.2013.14.1.001.

- P.-C. Nguyen, S.-E. Kim, Nonlinear elastic dynamic analysis of space steel frames with semi-rigid connections. J. Constr. Steel Res., 84 (2013) 72-81. doi:10.1016/j.jcsr.2013.02.004.

- H. Hong, S. Wang, Reliability of Steel frame systems with Semi-Rigid connections. Institute for Catastrophic Loss Reduction Toronto, ON M5C 2R9, Canada, 2003.

- M.A. Hadianfard, R. Razani, Effects of semi-rigid behavior of connections in the reliability of steel frames. Struct. Saf., 25(2) (2003) 123-138. doi:10.1016/S0167-4730(02)00046-2.

- M. Hadianfard. Reliability based design optimization of semi-rigid steel frames. in 11th International Conference on Optimum Design of Structures and Materials in Engineering, OPTI. (2009), 131-142.

- M. Gündel, B. Hoffmeister, M. Feldmann. Reliability Analysis on Capacity Design Rules for Steel Frames. Wiesbaden: Springer Fachmedien Wiesbaden. (2014), 337-348. doi:10.1007/978-3-658-02810-7_28.

- H.-T. Thai, B. Uy, W.-H. Kang, S. Hicks, System reliability evaluation of steel frames with semi-rigid connections. J. Constr. Steel Res., 121 (2016) 29-39. doi:10.1016/j.jcsr.2016.01.009.

- B.M. Agostini, M.S.d.R. Freitas, R.A.d.M. Silveira, A.R.D.d. Silva, Structural reliability analysis of steel plane frames with semi-rigid connections. REM-Int. Eng. J., 71 (2018) 333-339. doi:10.1590/0370-44672017710044.

- T.-H. Nguyen, D.-D. Nguyen, Reliability Assessment of Steel-Concrete Composite Beams considering Metal Corrosion Effects. Adv. Civil Eng., 2020 (2020) 8817809. doi:10.1155/2020/8817809.

- L. Wang, A. Kolios, X. Liu, D. Venetsanos, R. Cai, Reliability of offshore wind turbine support structures: A state-of-the-art review. Renewable Sustainable Energy Rev., 161 (2022) 112250. doi:10.1016/j.rser.2022.112250.

- H. Liu. System reliability calibrations for the Direct Design Method of planar steel frames with partially restrained connections. Doctor of Philosophy. Faculty of Engineering and Information Technologies, School of Civil Engineering. The University of Sydney, 2018.

- E. ISO, 9223. Corrosion of metals and alloys: corrosivity of atmospheres: Classification. European, Committee for Standardization (CEN) Brussels, Belgium. (1992).

- EN, 1990. Eurocode: Basis of Structural Design :Part 1–1, European Committee for Standardization (CEN) Brussels, Belgium. (2002).

- EN, 1993-1-1. Eurocode3: Design of Steel Structures, European Committee for Standardization (CEN) Brussels, Belgium. (2004).

- ENV, 1993-1-4. Eurocode 3 : Design of Steel Structures - Part 1 – 4 : General Rules-Supplementary Rules for Stainless Steel, European Committee for Standardization (CEN) Brussels,Belgium. (1996).

- EN, 12500. Corrosion Likelihood in Atmospheric Environment, European Committee for Standardization (CEN) Brussels, Belgium. (2000).

- M. Komp, Atmospheric corrosion ratings of weethering steels―calculation and significance. Mater. Performance, 26(7) (1987) 42-44.

- M.S. Darmawan, A.N. Refani, M. Irmawan, R. Bayuaji, R.B. Anugraha, Time Dependent Reliability Analysis of Steel I Bridge Girder Designed Based on SNI T-02-2005 and SNI T-3-2005 Subjected to Corrosion. Procedia Eng., 54 (2013) 270-285. doi:10.1016/j.proeng.2013.03.025.

- M. Secer, E.T. Uzun, Corrosion Damage Analysis of Steel Frames Considering Lateral Torsional Buckling. Procedia Eng., 171 (2017) 1234-1241. doi:10.1016/j.proeng.2017.01.415.

- A. Kozlowski, R. Kowalczyk, M. Gizejowski. Estimation of the initial stiffness and moment resistance of steel and composite joints. in CTBUH 8th World Congress, Dubai. (2008).

- P. Thoft-Christensen, M.J. Baker, Structural Reliability Theory and Its Applications. Springer Berlin Heidelberg: Berlin, Heidelberg. (1982). doi:10.1007/978-3-642-68697-9.

- A.M. Hasofer, N.C. Lind, Exact and Invariant Second-Moment Code Format. J. Eng. Mech. Div., 100(1) (1974) 111-121. doi:10.1061/JMCEA3.0001848.

- TCVN, Steel structures-Design standard, TCVN 5575–2012, Ministry of Construction Hanoi, Vietnam. (2012).


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at