3-D Move Mechanistic Analysis and Cost Effectiveness of Asphalt Rubber and Polymer Modified Asphalt Pavement Under Various Axle Loading Conditions



A variety of axle loading conditions can lead to different tensile strains in asphalt pavements. One way to increase resistance to these tensile strains is to add materials such as crumb rubber or polymers to the pavement mixture. Using three given asphalt pavement design mixtures, a 3D-Move mechanistic analysis was performed to determine the fatigue life of three given mixtures: unmodified reference, asphalt rubber, and polymer modified. These mixtures were tested under various axle loading conditions. This mechanistic analysis was then combined with a cost analysis which showed that despite the increase in cost, the asphalt rubber design mixture was the most cost-effective, with the polymer modified mixture finishing in second ahead of the unmodified reference mixture.



Mechanistic analysis; Crumb rubber; Fatigue life; Cost-effectiveness; Load configurations

Full Text:



- L. Fiorino, V. Macillo, F.M. Mazzolani, Mechanical behaviour of bolt-channel joining technology for aluminium structures. Constr. Build. Mater., 73 (2014) 76-88. doi:10.1016/j.conbuildmat.2014.09.086.

- B. Huang, L.N. Mohammad, P.S. Graves, C. Abadie, Louisiana Experience with Crumb Rubber-Modified Hot-Mix Asphalt Pavement. Transp. Res. Rec., 1789(1) (2002) 1-13. doi:10.3141/1789-01.

- X. Chen, M. Solaimanian, Evaluating fracture properties of crumb rubber modified asphalt mixes. Int. J. Pavement Res. Technol., 12(4) (2019) 407-415. doi:10.1007/s42947-019-0048-6.

- M. Heitzman, Design and construction of asphalt paving materials with crumb rubber modifier. Transp. Res. Rec., 1339 (1992) 1-8.

- G.W. JR. Maupin, Virginia's Experimentation with Asphalt Rubber Concrete. Transp. Res. Rec., 1339 (1991) 9-15.

- X. Ding, L. Chen, T. Ma, H. Ma, L. Gu, T. Chen, Y. Ma, Laboratory investigation of the recycled asphalt concrete with stable crumb rubber asphalt binder. Constr. Build. Mater., 203 (2019) 552-557. doi:10.1016/j.conbuildmat.2019.01.114.

- H. Wang, Z. You, J. Mills-Beale, P. Hao, Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber. Constr. Build. Mater., 26(1) (2012) 583-590. doi:10.1016/j.conbuildmat.2011.06.061.

- M.I. Souliman, M. Mamlouk, A. Eifert, Cost-effectiveness of Rubber and Polymer Modified Asphalt Mixtures as Related to Sustainable Fatigue Performance. Procedia Eng., 145 (2016) 404-411. doi:10.1016/j.proeng.2016.04.007.

- R.V. Siddharthan, J. Yao, P.E. Sebaaly, Pavement Strain from Moving Dynamic 3D Load Distribution. J. Transp. Eng., 124(6) (1998) 557-566. doi:10.1061/(ASCE)0733-947X(1998)124:6(557).

- R.V. Siddharthan, N. Krishnamenon, P.E. Sebaaly, Finite-Layer Approach to Pavement Response Evaluation. Transp. Res. Rec., 1709(1) (2000) 43-49. doi:10.3141/1709-06.

- R.V. Siddharthan, N. Krishnamenon, M. El-Mously, P.E. Sebaaly, Validation of a Pavement Response Model Using Full-scale Field Tests. Int. J. Pavement Eng., 3(2) (2002) 85-93. doi:10.1080/10298430290030595.

- WRSC, ARC Deliverables/Products Presentation and Workshop, Western Regional Superpave Center University of Nevada, Reno,Washington, D.C. (2015).


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.