Thermo mechanical characteristics of Sisal fibre reinforced composites after treatment with potassium permanganate and stearic acid

Subramanya RAGHAVENDRA, Kuntanahalli Narayanappa MANJUNATHA, Chandra Shekar Anjinappa ANJINAPPA

Abstract


This paper presents an experimental study of epoxy and sisal fibre composites with and without potassium permanganate and stearic acid treatment. A compression moulding technique was used to develop the composites. Differential Scanning Calorimetry (DSC), tensile and flexural tests, and scanning electron microscopy were used to investigate the thermal and mechanical behaviour of these composites. SEM images of sisal fibres revealed improvements in the fibre's surface topography further to the surface stearic acid treatment process. X-ray diffraction (XRD) analysis reveals that sisal fibre is crystalline in nature. When sisal fibre was treated with streaic acid, the tensile strength increased to 43.45 MPa. Potassium permanganate-treated fibre reinforced composites demonstrated high potential flexural strength. SEM analysis revealed that stearic acid-treated fibre improved interfacial adhesion between the fibres and matrix.

Keywords


sisal Fiber;stearic acid; potassium permanganate; Composites;Scanning Electron Microscope;

Full Text:

PDF

References


- K.G. Satyanarayana, K. Sukumaran, A.G. Kulkarni, S.G.K. Pillai, P.K. Rohatgi, Fabrication and properties of natural fibre-reinforced polyester composites. Composites, 17(4) (1986) 329-333. doi:10.1016/0010-4361(86)90750-0.

- G. Kalaprasad, B. Francis, S. Thomas, C.R. Kumar, C. Pavithran, G. Groeninckx, S. Thomas, Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym. Int., 53(11) (2004) 1624-1638. doi:10.1002/pi.1453.

- A. Atmakuri, A. Palevicius, L. Kolli, A. Vilkauskas, G. Janusas, Development and Analysis of Mechanical Properties of Caryota and Sisal Natural Fibers Reinforced Epoxy Hybrid Composites. Polymers, 13(6) (2021) 864. doi:10.3390/polym13060864.

- B. Bahja, A. Elouafi, A. Tizliouine, L.H. Omari, Morphological and structural analysis of treated sisal fibers and their impact on mechanical properties in cementitious composites. J. Build. Eng., 34 (2021) 102025. doi:10.1016/j.jobe.2020.102025.

- S. Kalia, B.S. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci., 49(7) (2009) 1253-1272. doi:10.1002/pen.21328.

- T. Paramasivam, A. Kalam, On the study of indigenous natural-fibre composites. Fibre Sci. Tech., 7 (1974) 85-88. doi:10.1016/0015-0568(74)90020-7.

- A. Valadez-Gonzalez, J.M. Cervantes-Uc, R. Olayo, P.J. Herrera-Franco, Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B, 30(3) (1999) 309-320. doi:10.1016/S1359-8368(98)00054-7.

- S. Varghese, B. Kuriakose, S. Thomas, K. Joseph, Effect of Adhesion on the Equilibrium Swelling of Short Sisal Fiber Reinforced Natural Rubber Composites. Rubber Chem. Technol., 68(1) (1995) 37-49. doi:10.5254/1.3538730.

- R.G. Raj, B.V. Kokta, F. Dembele, B. Sanschagrain, Compounding of cellulose fibers with polypropylene: Effect of fiber treatment on dispersion in the polymer matirx. J. Appl. Polym. Sci., 38(11) (1989) 1987-1996. doi:10.1002/app.1989.070381103.

- S. Varghese, B. Kuriakose, S. Thomas, A.T. Koshy, Mechanical and viscoelastic properties of short fiber reinforced natural rubber composites: effects of interfacial adhesion, fiber loading, and orientation. J. Adhes. Sci. Technol., 8(3) (1994) 235-248. doi:10.1163/156856194X01086.

- R. Nayak, I.L. Kyratzis, Y.B. Truong, R. Padhye, L. Arnold, G. Peeters, M. O’Shea, L. Nichols, Fabrication and characterisation of polypropylene nanofibres by meltblowing process using different fluids. J. Mater. Sci., 48(1) (2013) 273-281. doi:10.1007/s10853-012-6742-2.

- R. Subramanya, K.G. Satyanarayana, B. Shetty Pilar, Evaluation of Structural, Tensile and Thermal Properties of Banana Fibers. J. Nat. Fibers, 14(4) (2017) 485-497. doi:10.1080/15440478.2016.1212771.

- J.L. Guimarães, F. Wypych, C.K. Saul, L.P. Ramos, K.G. Satyanarayana, Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydr. Polym., 80(1) (2010) 130-138. doi:10.1016/j.carbpol.2009.11.002.

- P.H.F. Pereira, K.C.C.C. Benini, C.Y. Watashi, H.J.C. Voorwald, M.O.H. Cioffi, Characterization of high density polyethylene (HDPE) reinforced with banana peel fibers. BioResources, 8(2) (2013) 2351-2365. doi:10.15376/biores.8.2.2351-2365

- M. Idicula, K. Joseph, S. Thomas, Mechanical Performance of Short Banana/Sisal Hybrid Fiber Reinforced Polyester Composites. J. Reinf. Plast. Compos., 29(1) (2010) 12-29. doi:10.1177/0731684408095033.

- Akash, K.V. Sreenivasa Rao, N.S. Venkatesha Gupta, D.S. Arun kumar, Mechanical Properties of Sisal/Coir Fiber Reinforced Hybrid Composites Fabricated by Cold Pressing Method. IOP Conference Series: Materials Science and Engineering, 149 (2016) 012092. doi:10.1088/1757-899x/149/1/012092.

- A.V.S. Girish, B. Vijaya, S. Arjun, S. Raghavendra, Manufacturing and mechanical characterization of coir fibre composites based on vinyl ester. Adv. Mater. Process. Tech., (2021) 1-10. doi:10.1080/2374068X.2021.1878711.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.