Modelling the Viscoelastic Behavior of asphalt Concrete at the Nanoscale



The main purpose of this paper is to investigate the mechanical properties “hardness H and elastic modulus E” of asphalt concrete AC at the nanoscale to get its mechanical behavior comparing to the distinct behaviors of its different phases got from experimental works.  AC is generally composed of coarse aggregates that have an elastic mechanical behavior, a viscoelastic or viscoplastic binder and interface transition zone ITZ. For this; as bituminous material we have used an asphalt concrete sample which is subjected to a nanoindentation simulation test using a Berkovich indenter tip with a load of 2500 µN for 10 s of loading and 10 s of unloading. AC is supposed to be a viscoelastic material; so the Prony series are introduced and different coefficients of prony are obtained from an experimental relaxation’s master curve of AC. Finite element software ABAQUS 6.13 is used to simulate this mechanical behavior where our study is carried out at a temperature of 25°C. The results showed that hardness and young’s modulus values are closer to the aggregates phase than to the fine matrix results, in other words it seems that our asphalt concretes responds of an elastic behavior at the nanoscale.


Hardness; Young's Modulus; Nanoindentation; Viscoelastic; Abaqus 6.13

Full Text:



- H. Faisal, R. Tarefder, M. Weldegiorgis, Nanoindentation Characterization of Moisture Damage in Different Phases of Asphalt Concrete. Adv. Civ. Eng. Mat., 4(1) (2015) 31-46. doi:10.1520/ACEM20140035.

- R.A. Tarefder, H. Faisal, Effects of Dwell Time and Loading Rate on the Nanoindentation Behavior of Asphaltic Materials. J. Nanomech. Micromech., 3(2) (2013) 17-23. doi:10.1061/(ASCE)NM.2153-5477.0000054.

- R. Tarefder, H. Faisal, Nanoindentation Characterization of Asphalt Concrete Aging. J. Nanomech. Micromech., 4(1) (2014) A4013003. doi:10.1061/(ASCE)NM.2153-5477.0000061.

- R.A. Tarefder, H.M. Faisal, Modeling Nanoindentation Creep Behavior of Asphalt Binder. Adv. Civ. Eng. Mat., 2(1) (2013) 418-440. doi:10.1520/ACEM20130060.

- H.M. Faisal, M.I. Hossain, R.A. Tarefder, Nanomechanical Evaluation of Vapor-Conditioned and Unconditioned Asphalt. Transp. Res. Rec., 2506(1) (2015) 126-136. doi:10.3141/2506-14.

- B.J. Briscoe, L. Fiori, E. Pelillo, Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys., 31(19) (1998) 2395-2405. doi:10.1088/0022-3727/31/19/006.

- J.R. Gregory, S.M. Spearing, Nanoindentation of neat and in situ polymers in polymer–matrix composites. Compos. Sci. Technol., 65(3) (2005) 595-607. doi:10.1016/j.compscitech.2004.09.001.

- X. Chen, J.J. Vlassak, Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res., 16(10) (2011) 2974-2982. doi:10.1557/JMR.2001.0408.

- R.G. Allen, D.N. Little, A. Bhasin, R.L. Lytton, Identification of the Composite Relaxation Modulus of Asphalt Binder Using AFM Nanoindentation. J. Mater. Civ. Eng., 25(4) (2013) 530-539. doi:10.1061/(ASCE)MT.1943-5533.0000615.

- M.I. Hossain, H.M. Faisal, R.A. Tarefder, Determining effects of moisture in mastic materials using nanoindentation. Mater. Struct., 49(3) (2016) 1079-1092. doi:10.1617/s11527-015-0559-9.

- R.A. Tarefder, A.M. Zaman, W. Uddin, Determining Hardness and Elastic Modulus of Asphalt by Nanoindentation. Int. J. Geomech., 10(3) (2010) 106-116. doi:10.1061/(ASCE)GM.1943-5622.0000048.

- E.A. Ossa, A.C. Collop, Spherical Indentation Behavior of Asphalt Mixtures. J. Mater. Civ. Eng., 19(9) (2007) 753-761. doi:10.1061/(ASCE)0899-1561(2007)19:9(753).

- E.A. Ossa, V.S. Deshpande, D. Cebon, Spherical indentation behaviour of bitumen. Acta Mater., 53(11) (2005) 3103-3113. doi:10.1016/j.actamat.2005.01.040.

- Y. Liu, Y. Xiong, K. Liu, C. Yang, P. Peng, Indentation size and loading rate sensitivities on mechanical properties and creep behavior of solid bitumen. Int. J. Coal Geology, 216 (2019) 103295. doi:10.1016/j.coal.2019.103295.

- M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res., 1(4) (2011) 601-609. doi:10.1557/JMR.1986.0601.

- R. Tarefder, M. Arifuzzaman. Nanoindentation study on moisture damage in asphalt concrete. in 8th International Transportation Specialty Conference. Winnipeg, Manitoba, Canada. (2010), 1578-1587.

- Z. Khan, H.M. Faisal, R. Tarefder. Fracture Toughness Measurement of Asphalt Concrete by Nanoindentation. in ASME 2017 International Mechanical Engineering Congress and Exposition. (2017. doi:10.1115/imece2017-71840.

- H. Faisal. Nanomechanical characterization of asphalt. Master Degree Thesis. University of New Mexico, 2013.

- S. Khorasani, E. Masad, E. Kassem, R.A. Al-Rub, Nano-mechanical characterization of mastic, aggregate, and interfacial zone in asphalt composites. J. Test. Eval., 41(6) (2013) 924-932. doi:10.1520/JTE20120178.

- S. Barbhuiya, B. Caracciolo, Characterisation of Asphalt Concrete Using Nanoindentation. Materials, 10(7) (2017) 823. doi:10.3390/ma10070823.

- Z.H. Khan, H.M. Faisal, R.A. Tarefder, Phase identification and characterization of aging effects in asphaltic materials by nanoindentation testing. Transportation Geotechnics, 17 (2018) 154-164. doi:10.1016/j.trgeo.2018.10.002.

- X. Zhu, Y. Yuan, L. Li, Y. Du, F. Li, Identification of interfacial transition zone in asphalt concrete based on nano-scale metrology techniques. Mater. Des., 129 (2017) 91-102. doi:10.1016/j.matdes.2017.05.015.

- J.H. Teddy, Modulus of Elasticity of Concrete Affected by Elastic Moduli of Cement Paste Matrix and Aggregate. ACI Journal Proceedings, 59(3). doi:10.14359/7924.

- M.W. Witczak, O.A. Fonseca, Revised Predictive Model for Dynamic (Complex) Modulus of Asphalt Mixtures. Transp. Res. Rec., 1540(1) (1996) 15-23. doi:10.1177/0361198196154000103.

- M.F. Aljarrah, E. Masad, Nanoscale viscoelastic characterization of asphalt binders using the AFM-nDMA test. Mater. Struct., 53(4) (2020) 110. doi:10.1617/s11527-020-01543-3.

- A. Jäger, R. Lackner, K. Stangl, Microscale characterization of bitumen – back-analysis of viscoelastic properties by means of nanoindentation. Int. J. Mat. Res., 98(5) (2007) 404-413. doi:10.3139/146.101486.

- Y. Veytskin, C. Bobko, C. Castorena, Y.R. Kim, Nanoindentation investigation of asphalt binder and mastic cohesion. Constr. Build. Mater., 100 (2015) 163-171. doi:10.1016/j.conbuildmat.2015.09.053.

- J. Wang, T.C. Ovaert, Computational mechanical property determination of viscoelastic/plastic materials from nanoindentation creep test data. J. Mater. Res., 24(3) (2011) 1245-1257. doi:10.1557/jmr.2009.0141.

- S. Bitumen, The Shell bitumen handbook. United Kingdom, 1990.

- C. Pichler, A. Jäger, R. Lackner, J. Eberhardsteiner. Identification of material properties from nanoindentation: Application to bitumen and cement paste. in 22nd DANUBIA-ADRIA Symposium. On Experimental Methods in Solid Mechanics, Monticelli Terme. Parma, Italy: na. (2005.

- H. Fadil, D. Jelagin, P.L. Larsson, On the Measurement of two Independent Viscoelastic Functions with Instrumented Indentation Tests. Exp. Mech., 58(2) (2018) 301-314. doi:10.1007/s11340-017-0342-7.

- H. Fadil, D. Jelagin, P.-L. Larsson, M.N. Partl, Measurement of the viscoelastic properties of asphalt mortar and its components with indentation tests. Road Mat. Pav. Des., 20(sup2) (2019) S797-S811. doi:10.1080/14680629.2019.1628434.

- T. Chen, NASA/TM-2000-210123 - Determining a Prony series for a viscoelastic material from time varying strain data, Langley Research Center Hampton-VA. (2000).

- P. Karki. Computational and experimental characterization of bituminous composites based on experimentally determined properties of constituents. Master degree Thesis. Texas A&M University, 2010.

- W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7(6) (2011) 1564-1583. doi:10.1557/JMR.1992.1564.

- C. Hu, Z. Li, A review on the mechanical properties of cement-based materials measured by nanoindentation. Constr. Build. Mater., 90 (2015) 80-90. doi:10.1016/j.conbuildmat.2015.05.008.

- ABAQUS, User’s Manual, Version 6.13, Dassault Systémes Simulia Corp. Provid. Rhode, (2013).

- G. Lapierre, Etude et modélisation du comportement viscoélastique des ballons pressurisés stratosphériques, rapport de DEA ENIT UPS. (2003).

- P. Karki, P.A. Yuya, Y.-R. Kim, J.A. Turner, Nanomechanical Properties of Constituent Phases in Bituminous Mixtures. J. Mater. Civ. Eng., 28(10) (2016) 04016090. doi:10.1061/(ASCE)MT.1943-5533.0001605.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at