A metal atmosphere corrosion in the industrial zones - Reliability and durability prediction models of steel structures

Ngoc-Long TRAN, Van-Tien PHAN, Trong-Ha NGUYEN


Currently, the steel structure has been popularly used in industrial zones due to cost advantage and fast construction time. However, the industrial zone is an area with complex corrosive agents in the environment such as sulfur dioxides and chlorides. This paper presents a reliability prediction model considering atmosphere corrosion at the industrial zones. The prediction model is a combination of metal atmosphere corrosion (MAC), finite element method (FEM), and Monte Carlo (MC) simulation. Thereafter, that predictive model is applied for reliability and durability assessment of the steel structures due to atmosphere corrosion in the industrial zones until a life-service of 100 years. The result reveals that the safe probability of the steel structure is reduced to approximately 90 and 80% after 50 years and 100 years, respectively. It implies that the time-varying structural degradation at the design step should be considered.


Corrosion; Reliability and durability analysis; Atmosphere corrosion; Monte Carlo simulation; Finite element method (FEM)

Full Text:



- Standard British, EN 1990: Eurocode—Basis of structural design. (2002).

- E. Eurocode, 3: Design of steel structures–Part 1.4: General rules–Supplementary rules for stainless steels. European Committee for Standardization, ENV 1993-1-4, CEN Brussels. (1996).

- H.E. Townsend, Effects of Alloying Elements on the Corrosion of Steel in Industrial Atmospheres. Corrosion, 57(06) (2001). doi:10.5006/1.3290374.

- M.N. Nguyen, X. Wang, R.H. Leicester, An assessment of climate change effects on atmospheric corrosion rates of steel structures. Corros. Eng. Sci. Technol., 48(5) (2013) 359-369. doi:10.1179/1743278213Y.0000000087.

- L. Hao, S. Zhang, J. Dong, W. Ke, Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere. Corros. Sci., 59 (2012) 270-276. doi:10.1016/j.corsci.2012.03.010.

- H. Elmsellem, H. Nacer, F. Halaimia, A. Aouniti, I. Lakehal, A. Chetouani, S. Al-Deyab, I. Warad, R. Touzani, B. Hammouti, Anti-corrosive properties and quantum chemical study of (E)-4-methoxy-N-(methoxybenzylidene) aniline and (E)-N-(4-methoxybenzylidene)-4-nitroaniline coating on mild steel in molar hydrochloric. Int. J. Electrochem. Sci, 9(9) (2014) 5328-5351.

- D. Douche, H. Elmsellem, E.H. Anouar, L. Guo, B. Hafez, B. Tüzün, A. El Louzi, K. Bougrin, K. Karrouchi, B. Himmi, Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical, DFT and molecular dynamics simulation investigations. J. Mol. Liq., 308 (2020) 113042. doi:10.1016/j.molliq.2020.113042.

- A. Ziouche, A. Hammouda, N. Boucherou, M. Mokhtari, B. Hafez, H. Elmsellem, S. Abaidia, Corrosion Protection Enhancement on Aluminum Alloy And Magnesium Alloy by Mo-CeO2 conversion coating. Moroccan Journal of Chemistry, 9(3) (2021) 9-3 (2021) 386-393. doi:10.48317/IMIST.PRSM/morjchem-v9i3.27828.

- S. Attabi, M. Mokhtari, Y. Taibi, I. Abdel-Rahman, B. Hafez, H. Elmsellem, Electrochemical and Tribological Behavior of Surface-Treated Titanium Alloy Ti–6Al–4V. J. Bio- Tribo-Corro., 5(1) (2018) 2. doi:10.1007/s40735-018-0193-5.

- D. Jeroundi, S. Chakroune, H. Elmsellem, E. El Hadrami, A. Ben-Tama, A. Elyoussfi, A. Dafali, C. Douez, B. Hafez, 2, 3-(2-alkylthio)-6, 7-bis (2-alkylthio) TTF: a new and green synthetic anti-corrosive inhibitors for mild steel in 1.0 HCl. J. Mater. Environ. Sci., 9(1) (2018) 334-344. doi:10.26872/jmes.2018.9.1.37

- K. Chkirate, K. Azgaou, H. Elmsellem, B. El Ibrahimi, N.K. Sebbar, E.H. Anouar, M. Benmessaoud, S. El Hajjaji, E.M. Essassi, Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl)methyl]benzimidazole against carbon steel corrosion in 1 M HCl solution: Combining experimental and theoretical studies. J. Mol. Liq., 321 (2021) 114750. doi:10.1016/j.molliq.2020.114750.

- R.E. Melchers, The effect of corrosion on the structural reliability of steel offshore structures. Corros. Sci., 47(10) (2005) 2391-2410. doi:10.1016/j.corsci.2005.04.004.

- A. Kosaki, The corrosion behavior of one-fifth scale lid models of transport cask submerged in sea bottom. Corros. Sci., 47(10) (2005) 2361-2376. doi:10.1016/j.corsci.2004.10.015.

- Z. Kala, Stability problems of steel structures in the presence of stochastic and fuzzy uncertainty. Thin-Walled Str., 45(10) (2007) 861-865. doi:10.1016/j.tws.2007.08.007.

- S. Afshan, P. Francis, N.R. Baddoo, L. Gardner, Reliability analysis of structural stainless steel design provisions. J. Const. Ste. Res., 114 (2015) 293-304. doi:10.1016/j.jcsr.2015.08.012.

- T. Ngoc-Long, T. Ha, The effect of metal corrosion on the structural reliability of the Pre-Engineered steel frame. J. Mat. Eng. Str. «JMES», 7(2) (2020) 155-165.

- N.T. Ha, Reliability assessment of frame steel considering semi-rigid connections. J. Mat. Eng. Str., 6(1) (2019) 119-126.

- D.E. Klinesmith, R.H. McCuen, P. Albrecht, Effect of Environmental Conditions on Corrosion Rates. J. Mat. Civ. Eng., 19(2) (2007) 121-129. doi:10.1061/(ASCE)0899-1561(2007)19:2(121).

- D.E. Klinesmith, R.H. McCuen, P. Albrecht, Effect of environmental conditions on corrosion rates. Journal of Materials in Civil Engineering, 19(2) (2007) 121-129.

- M. Lemaire, A. Chateauneuf, J.-C. Mitteau, Fiabilité des structures. Hermes, (2005).

- N.-L. Tran, T.-H. Nguyen, V.-P. Phan, Reliability assessment of Buckling Strength for Battened Built-up Columns steel considering shear deformations. IOP Conference Series: Materials Science and Engineering, 869(5) (2020) 052041. doi:10.1088/1757-899x/869/5/052041.

- [Đ.X. Hùng, N.T. Hà, Assessment reliability of plan frame in the buckling condition using stochastic finite element method. J. Sci. Techno. Civ. Eng., 10(2) (2016) 23-30.

- N.T. Ha, Reliability assessment of frame steel considering semi-rigid connections. J. Mat. Eng. Str. , 6(1) (2019) 119-126.

- T.-H. Nguyen, D.-D. Nguyen, Reliability Assessment of Steel-Concrete Composite Beams considering Metal Corrosion Effects. Advances in Civil Engineering, 2020 (2020) 8817809. doi:10.1155/2020/8817809.

- B. Ellingwood, J.G. MacGregor, T.V. Galambos, C.A. Cornell, Probability Based Load Criteria: Load Factors and Load Combinations. J. Str. Div., 108(5) (1982) 978-997. doi:10.1061/JSDEAG.0005959.

- F.M. Bartlett, R.J. Dexter, M.D. Graeser, J.J. Jelinek, B.J. Schmidt, T.V. Galambos, Updating standard shape material properties database for design and reliability. Eng. J.-American Inst. Ste. Const. Inc, 40(1) (2003) 2-14.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.