Stochastic finite element analysis of the free vibration of non-uniform beams with uncertain material

Nhung Thi NGUYEN, Hien Duy TA, Thuan Nguyen VAN, Tien Ngoc DAO


This paper deal with the stochastic finite element method for investigating the eigenvalues of free vibration of non-uniform beams due to a random field of elastic modulus. The formulation of stochastic analysis of the non-uniform beam is established using perturbation method in conjunction with finite element method. Monte Carlo simulation (MCS) used for validation with stochastic finite element approach. The spectral representation was used to generate a random field to employ the Monte Carlo simulation. The performance of results of the uncertain eigenvalue problem of non-uniform beams with random field of elastic modulus by comparing the first-order perturbation technique with the same moments evaluated from the Monte Carlo simulation. The numerical results show that the response of coefficient of variation of eigenvalue increases when the ratio of correlation distance of random field increases.


Non-uniform beam; Free vibration; Stochastic FEM; Spectral representation, Random field

Full Text:



- P.V. Phe, N.X. Huy, A numerical study on the effect of adhesives on the behavior of GFRP-Flexural strengthened wide flangesteel beams. Transp. Commun. Sci. J., 71(5) (2020) 541-552. doi:10.25073/tcsj.71.5.7.

- N.A. Tuan, Geometric non-linearity in a multi-fiber displacement-based finite element beam model – an enhanced local formulation under torsion. Transp. Commun. Sci. J., 70(4) (2020) 359-367. doi:10.25073/tcsj.71.4.8.

- S.Y. Lee, S.M. Lin, Non-uniform timoshenko beams with time-dependent elastic boundary conditions. J. Sound Vibrat., 217(2) (1998) 223-238. doi:10.1006/jsvi.1998.1747.

- R.H. Gutierrez, P.A.A. Laura, R.E. Rossi, Vibrations of a timoshenko beam of non-uniform cross-section elastically restrained at one end and carrying a finite mass at the other. Ocean Eng., 18(1) (1991) 129-145. doi:10.1016/0029-8018(91)90038-R.

- F.F. Çalım, Free and forced vibrations of non-uniform composite beams. Compos. Struct., 88(3) (2009) 413-423. doi:10.1016/j.compstruct.2008.05.001.

- L. Sen Yung, K. Huel Yaw, Free vibrations of non-uniform beams resting on non-uniform elastic foundation with general elastic end restraints. Comput. Str., 34(3) (1990) 421-429. doi:10.1016/0045-7949(90)90266-5.

- M.H. Kargarnovin, D. Younesian, Dynamics of Timoshenko beams on Pasternak foundation under moving load. Mech. Res. Commun., 31(6) (2004) 713-723. doi:10.1016/j.mechrescom.2004.05.002.

- M. Sorrenti, M. Di Sciuva, J. Majak, F. Auriemma, Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method. Mech. Compos. Mater., 57(1) (2021) 1-18. doi:10.1007/s11029-021-09929-2.

- X.Y. Zhou, P.D. Gosling, C.J. Pearce, Ł. Kaczmarczyk, Z. Ullah, Perturbation-based stochastic multi-scale computational homogenization method for the determination of the effective properties of composite materials with random properties. Comput. Methods Appl. Mech. Eng., 300 (2016) 84-105. doi:10.1016/j.cma.2015.10.020.

- T.D. Hien, A static analysis of nonuniform column by stochastic finite element method using weighted integration approach. Transp. Commun. Sci. J., 70(4) (2020) 359-367. doi:10.25073/tcsj.71.4.5.

- A.Z. Khurshudyan, S.K. Arakelyan, Resolving Controls for the Boundary Approximate Controllability of Sandwich Beams with Uncertainties the Green’s Function Approach. Mech. Compos. Mater., 55(1) (2019) 85-94. doi:10.1007/s11029-019-09794-0.

- T.P. Chang, H.C. Chang, Stochastic dynamic finite element analysis of a nonuniform beam. Int. J. Sol. Str., 31(5) (1994) 587-597. doi:10.1016/0020-7683(94)90139-2.

- Y. Xu, Y. Qian, G. Song, Stochastic finite element method for free vibration characteristics of random FGM beams. Appl. Math. Model., 40(23) (2016) 10238-10253. doi:10.1016/j.apm.2016.07.025.

- H.D. Ta, P.-C. Nguyen, Perturbation based stochastic isogeometric analysis for bending of functionally graded plates with the randomness of elastic modulus. Lat Am J Sol. Str., 17 (2020).

- L. LoganhDaryl, A first course in the finite element method. Stamford, C: Cengage Learning, 2011.

- T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Civil and Mechanical Engineering. Dover Publications, 2000.

- M. Shinozuka, G. Deodatis, Simulation of Stochastic Processes by Spectral Representation. Appl. Mech. Rev., 44(4) (1991) 191-204. doi:10.1115/1.3119501.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at