Stochastic finite element analysis of the free vibration of non-uniform beams with uncertain material
Abstract
Keywords
Full Text:
PDFReferences
- P.V. Phe, N.X. Huy, A numerical study on the effect of adhesives on the behavior of GFRP-Flexural strengthened wide flangesteel beams. Transp. Commun. Sci. J., 71(5) (2020) 541-552. doi:10.25073/tcsj.71.5.7.
- N.A. Tuan, Geometric non-linearity in a multi-fiber displacement-based finite element beam model – an enhanced local formulation under torsion. Transp. Commun. Sci. J., 70(4) (2020) 359-367. doi:10.25073/tcsj.71.4.8.
- S.Y. Lee, S.M. Lin, Non-uniform timoshenko beams with time-dependent elastic boundary conditions. J. Sound Vibrat., 217(2) (1998) 223-238. doi:10.1006/jsvi.1998.1747.
- R.H. Gutierrez, P.A.A. Laura, R.E. Rossi, Vibrations of a timoshenko beam of non-uniform cross-section elastically restrained at one end and carrying a finite mass at the other. Ocean Eng., 18(1) (1991) 129-145. doi:10.1016/0029-8018(91)90038-R.
- F.F. Çalım, Free and forced vibrations of non-uniform composite beams. Compos. Struct., 88(3) (2009) 413-423. doi:10.1016/j.compstruct.2008.05.001.
- L. Sen Yung, K. Huel Yaw, Free vibrations of non-uniform beams resting on non-uniform elastic foundation with general elastic end restraints. Comput. Str., 34(3) (1990) 421-429. doi:10.1016/0045-7949(90)90266-5.
- M.H. Kargarnovin, D. Younesian, Dynamics of Timoshenko beams on Pasternak foundation under moving load. Mech. Res. Commun., 31(6) (2004) 713-723. doi:10.1016/j.mechrescom.2004.05.002.
- M. Sorrenti, M. Di Sciuva, J. Majak, F. Auriemma, Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method. Mech. Compos. Mater., 57(1) (2021) 1-18. doi:10.1007/s11029-021-09929-2.
- X.Y. Zhou, P.D. Gosling, C.J. Pearce, Ł. Kaczmarczyk, Z. Ullah, Perturbation-based stochastic multi-scale computational homogenization method for the determination of the effective properties of composite materials with random properties. Comput. Methods Appl. Mech. Eng., 300 (2016) 84-105. doi:10.1016/j.cma.2015.10.020.
- T.D. Hien, A static analysis of nonuniform column by stochastic finite element method using weighted integration approach. Transp. Commun. Sci. J., 70(4) (2020) 359-367. doi:10.25073/tcsj.71.4.5.
- A.Z. Khurshudyan, S.K. Arakelyan, Resolving Controls for the Boundary Approximate Controllability of Sandwich Beams with Uncertainties the Green’s Function Approach. Mech. Compos. Mater., 55(1) (2019) 85-94. doi:10.1007/s11029-019-09794-0.
- T.P. Chang, H.C. Chang, Stochastic dynamic finite element analysis of a nonuniform beam. Int. J. Sol. Str., 31(5) (1994) 587-597. doi:10.1016/0020-7683(94)90139-2.
- Y. Xu, Y. Qian, G. Song, Stochastic finite element method for free vibration characteristics of random FGM beams. Appl. Math. Model., 40(23) (2016) 10238-10253. doi:10.1016/j.apm.2016.07.025.
- H.D. Ta, P.-C. Nguyen, Perturbation based stochastic isogeometric analysis for bending of functionally graded plates with the randomness of elastic modulus. Lat Am J Sol. Str., 17 (2020).
- L. LoganhDaryl, A first course in the finite element method. Stamford, C: Cengage Learning, 2011.
- T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Civil and Mechanical Engineering. Dover Publications, 2000.
- M. Shinozuka, G. Deodatis, Simulation of Stochastic Processes by Spectral Representation. Appl. Mech. Rev., 44(4) (1991) 191-204. doi:10.1115/1.3119501.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN 2170-127X
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.