Random Dense Packing Parameters of Two-Dimensional Spherical Powders for Hot Isostatic Pressing Process Modeling



In this paper, we have used the hot isostatic pressing HIP models previously carried out for the study of the random dense packing densification (RDP) of spherical particles of the same size in order to adapt them to the RDP of two-dimensional spherical particles. A new microscopic approach is thus developed that allows the densification parameters of two-dimensional spherical powder aggregates to be evaluated as a function of the relative density, taking into account the morphological changes of the powder particles and the porosity. The equations obtained for each parameter (coordination number, mean contact area and effective pressure) made it possible to represent the results in the form of curves. These show that our new approach is well adapted to a realistic description of the densification of powder aggregates with particles of more or less similar sizes.



Hot Isostatic Pressing Process Modeling; Random Dense Packing; Effective Pressure; Coordination Number

Full Text:



- E. Arzt, M.F. Ashby, K. Easterling, Practical applications of hot-isostatic pressing diagrams: Four case studies. (1981). 33574. doi:10.1007/BF02651618.

- A.S. Helle, K.E. Easterling, M.F. Ashby, Hot-isostatic pressing diagrams: New developments. Acta Metall., 33(12) (1985) 2163-2174. doi:10.1016/0001-6160(85)90177-4.

- C. Rizkallah, J.P. Fondère, H.F. Raynaud, A. Vignes, Advanced process control of hot isostatic pressing. Application to Astroloy HIP. Revue de Métallurgie, 98(12) (2002) 1109-1128. doi:10.1051/metal:2001151.

- L. Redouani, S. Boudrahem, Hot isostatic pressing process simulation: application to metal powders. Can. J. Phys., 90(6) (2012) 573-583. doi:10.1139/p2012-057.

- L. Redouani. Nouvelle approche de la modélisation de la compression isostatique à chaud de poudres métalliques: utilisation de systèmes modèles et prise en compte des trois étapes du cycle. PhD Thesis. University of Abderrahmane Mira Bejaia, 2013.

- L. Redouani, S. Boudrahem, Simulation of the metal and ceramic powders densification process by hot isostatic pressing. Int. J. Eng. Sci. Innov. Tech., 4(3) (2015) 171-180.

- A.M. Abdelhafeez, K.E.A. Essa, Influences of Powder Compaction Constitutive Models on the Finite Element Simulation of Hot Isostatic Pressing. Procedia CIRP, 55 (2016) 188-193. doi:10.1016/j.procir.2016.07.025.

- C. Van Nguyen, Y. Deng, A. Bezold, C. Broeckmann, A combined model to simulate the powder densification and shape changes during hot isostatic pressing. Comput. Methods Appl. Mech. Eng., 315 (2017) 302-315. doi:10.1016/j.cma.2016.10.033.

- L. Redouani, S. Boudrahem, S. Alem, New hot isostatic pressing (HIP) simulation method with taking into account of the operating cycle ramp. Int. J. Adv. Manuf. Tech. 102(9)(2019) 3291-3299. doi:10.1007/s00170-019-03395-w.

- A. Basyir, A.S. Wismogroho, D. Aryanto, W.B. Widayatno, Effect of hot isostatic pressing method to enhance quality of tin powder. AIP Conf. Proc., 2256(1) (2020) 030021. doi:10.1063/5.0014653.

- E. Arzt, The influence of an increasing particle coordination on the densification of spherical powders. Acta Metall., 30(10) (1982) 1883-1890. doi:10.1016/0001-6160(82)90028-1.

- V. Guerin. Prédiction et compréhension de la densification des poudres commerciales d’alumine et de fer grâce à une approche par réseau de neurones artificiels. (2004).

- L. Olmos, T. Takahashi, D. Bouvard, C.L. Martin, L. Salvo, D. Bellet, M. Di Michiel, Analysing the sintering of heterogeneous powder structures by in situ microtomography. Philos. Mag., 89(32) (2009) 2949-2965. doi:10.1080/14786430903150225.

- B. Jasper, J.W. Coenen, J. Riesch, T. Höschen, M. Bram, C. Linsmeier, Powder Metallurgical Tungsten Fiber-Reinforced Tungsten. Mater. Sci. Forum, 825-826 (2015) 125-133. doi:10.4028/www.scientific.net/MSF.825-826.125.

- G. Roquier, A Theoretical Packing Density Model (TPDM) for ordered and disordered packings. Powder Technol., 344 (2019) 343-362. doi:10.1016/j.powtec.2018.12.033.

- Y. Feng, B. Gong, H. Cheng, L. Wang, X. Wang, Effects of fixed wall and pebble size ratio on packing properties and contact force distribution in binary-sized pebble mixed beds at the maximum packing efficiency state. Powder Technol., 390 (2021) 504-520. doi:10.1016/j.powtec.2021.05.099.

- H.N.G. Wadley, T.S. Davison, J.M. Kunze, Densification of metal coated fibers by elastic-plastic contact deformation. Composites Part B, 28(3) (1997) 233-242. doi:10.1016/S1359-8368(96)00044-3.

- [18]- S.M. Sweeney, C.L. Martin, Pore size distributions calculated from 3-D images of DEM-simulated powder compacts. Acta Mater., 51(12) (2003) 3635-3649. doi:10.1016/S1359-6454(03)00183-6.

- C. Martin, D. Bouvard, S. Shima, Study of particle rearrangement during powder compaction by the discrete element method. J. Mech. Phys. Solids, 51(4) (2003) 667-693.

- F.B. Swinkels, D.S. Wilkinson, E. Arzt, M.F. Ashby, Mechanisms of hot-isostatic pressing. Acta Metall., 31(11) (1983) 1829-1840. doi:10.1016/0001-6160(83)90129-3.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.