Modelling of Creep Rupture in Clay using the Bounding Surface Viscoplasticity Theory

Thi Ngoc MAC, Babak SHAHBODAGH, Nasser KHALILI

Abstract


The creep process is generally defined into three stages: primary, secondary and tertiary creep. Tertiary creep is the last phase among the three phases of creep process, where the strain rate accelerates until creep rupture occurs. This paper presents a viscoplastic constitutive model and demonstrates the capability of the model to capture tertiary creep and creep rupture. The model is based on the bounding surface plasticity and the viscoplastic consistency framework. It meets the consistency condition and allows a seamless transition from rate-independent plasticity to rate-dependent viscoplasticity. The rate-dependency is achieved through defining the bounding surface as a function of viscoplastic volumetric strain and viscoplastic volumetric strain rate. Simulation results and comparison with experimental data are presented for a set of undrained creep tests on normally consolidated soil and drained creep tests on heavily over-consolidated clay to show the application of the model in capturing the tertiary creep in clayey soils.


Keywords


Tertiary Creep; Clay; Bounding Surface; Viscoplasticity;

Full Text:

PDF

References


- P. Perzyna, On the constitutive equations for work-hardening and rate sensitive plastic materials. Bul. Acad. Pol. Sci. Serie des Sciences Techniques. 12(4) (1963) 199-206.

- P. Perzyna, Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9 (1966) 243-377. doi:doi.org/10.1016/S0065-2156(08)70009-7

- T. Adachi, F. Oka, Constitutive equations for normally consolidated clay based on elasto-viscoplasticity. Soils. Found. 22(4) (1982) 57-70. doi:10.3208/sandf1972.22.4_57

- V.N. Kaliakin, Y.F. Dafalias, Theoretical aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils. Soils. Found. 30(3) (1990) 11-24. doi:10.3208/sandf1972.30.3_11

- B.L. Kutter, N. Sathialingam, Elastic - viscoplastic modelling of the rate-dependent behaviour of clays.Geotech. 42(3) (1992) 427-441. doi:10.1680/geot.1992.42.3.427

- J.-H. Yin, J. Graham, Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils. Can. Geotech. J. 36(4) (1999) 736-745. doi:10.1139/cgj-36-4-736

- S. Kimoto, B. Shahbodagh Khan, M. Mirjalili, F. Oka, Cyclic elastoviscoplastic constitutive model for clay considering nonlinear kinematic hardening rules and structural degradation. Int. J. Geomech. 15(5) (2015) A4014005. doi:10.1061/(ASCE)GM.1943-5622.0000327

- F. Oka, B. Shahbodagh, S. Kimoto, A computational model for dynamic strain localization in unsaturated elasto-viscoplastic soils. Int. J. Numer. Anal. Methods. Geomech. 43(1) (2019)138-165. doi:10.1002/nag.2857

- B. Shahbodagh, H. Sadeghi, S. Kimoto, F. Oka, Large deformation and failure analysis of river embankments subjected to seismic loading. Acta Geotech. 15(6) (2020) 1381-1408. doi:10.1007/s11440-019-00861-3

- H. Sekiguchi, Theory of undrained creep rupture of normally consolidated clay based on elasto-viscoplasticity. Soils. Found. 24(1) (1984) 129-147. doi:10.3208/sandf1972.24.129

- T. Matsui, N. Abe, Verification of elasto-viscoplastic model of normally consolidated clays in undrained creep. In: Proceeding of the sixthInternational Conference onNumerical Methods in Geomechanics, 1988, pp. 453-459. doi:10.1201/9780203745366

- Y. Qiao, A. Ferrari, L. Laloui, W. Ding, Nonstationary flow surface theory for modeling the viscoplastic behaviors of soils. Comput. Geotech.76 (2016). 105-119. doi:10.1016/j.compgeo.2016.02.015

- N. Khalili, M.A. Habte, S. Zargarbashi, A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses. Comput. Geotech. 35(6) (2008) 872-889. doi:10.1016/j.compgeo.2008.08.003

- W.M. Wang, L.J. Sluys, R. de Borst, Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int. J. Numer. Meth. Eng. 40(20) (1997) 3839-3864. doi:10.1002/(sici)1097-0207(19971030)40:20<3839::aid-nme245>3.0.co;2-6

- A. Carosio, K. Willam, G. Etse, On the consistency of viscoplastic formulations. Int. J. Solids. Struct. 37(48) (2000) 7349-7369. doi:10.1016/S0020-7683(00)00202-X

- N. Khalili, M.A. Habte, S. Valliappan, A bounding surface plasticity model for cyclic loading of granular soils. I Int. J. Numer. Meth. Eng. 63(14) (2005) 1939-1960. doi:10.1002/nme.1351

- T.N. Mac, B. Shahbodaghkhan, N. Khalili, A Constitutive Model for Time-Dependent Behavior of Clay. Int. J. Geo. Environ. Eng. 8(6) (2014) 596-601. doi:10.5281/zenodo.1092936

- B. Shahbodagh, M. Mirjalili, S. Kimoto, F. Oka, Dynamic analysis of strain localization in water-saturated clay using a cyclic elasto-viscoplastic model.Int. J. Numer. Anal. Methods Geomech. 38(8) (2014) 771-793. doi:10.1002/nag.2221

- T.N. Mac, B. Shahbodagh, N. Khalili, A Bounding Surface Viscoplastic Constitutive Model for Unsaturated Soils. In: Proceedings of the sixth Biot Conference on Poromechanics, Poromechanics 2017, Paris, 2017, pp. 1045-1052. doi:10.1061/9780784480779.130

- B. Shahbodagh, M.A. Habte, A. Khoshghalb, N. Khalili, A bounding surface elasto-viscoplastic constitutive model for non-isothermal cyclic analysis of asphaltic materials. Int. J. Numer. Anal. Methods Geomech. 41(5) (2017) 721-739. doi:10.1002/nag.2574

- T.N. Mac, B. Shahbodagh, N. Khalili, A fully coupled flow-deformation model for time-dependent analysis of unsaturated soils. In: Proceedings of thesaventh Asia-Pacific Conference on Unsaturated Soils, Nagoya, 2019.

- B. Shahbodagh, T.N. Mac, G.A. Esgandani, N. Khalili, A Bounding Surface Viscoplasticity Model for Time-Dependent Behavior of Soils Including Primary and Tertiary Creep. Int. J. Geomech. 20(9) (2020)04020143. doi:10.1061/(ASCE)GM.1943-5622.0001744

- T.N. Mac, A Bounding Surface Viscoplasticity Model for Time dependent Behaviour of Saturated and Unsaturated Soils including Tertiary Creep, PhD Thesis, University of New South Wales, 2020.

- K. Arulanandan, C.K. Shen, R.B. Young, Undrained creep behaviour of a coastal organic silty clay. Geotech. 21(4) (1971) 359-375. doi:10.1680/geot.1971.21.4.359

- D.E. Snead, Creep rupture of saturated undisturbed clays, Ph,D Thesis, University of British Columbia, 1970.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.