Damage detection in structural health monitoring using combination of deep neural networks
Abstract
Structural Health Monitoring is a process of continuous evaluation of infrastructure status. In order to be able to detect the damage status, data collected from sensors have to be processed to identify the difference between the damaged and the undamaged states. In recent years, convolution neural network has been applied to detect the structural damage and with positive results. This paper proposes a new method of damage detection using combination of deep neural networks. The method uses a convolution neural network to extract deep features in time series and Long Short Term Memory network to find a statistically significant correlation of each lagged features in time series data. These two types of features are combined to increase discrimination ability compared to deep features only. Finally, the fully connected layer will be used to classify the time series into normal and damaged states. The accuracy of damaged detection was tested on a benchmark dataset from Los Alamos National Laboratory and the result shows that hybrid features provided a highly accurate damage identification.
Keywords
Full Text:
PDFReferences
- Y. Lin, Z. Nie, Structural Damage Detection with Automatic Feature-Extraction through Deep Learning. Comput-Aided.Civ.Infrastruct.Eng. 32(12) (2017) 1025-1046. doi:10.1111/mice.12313
- C.R. Farrar, G.H. James Iii, System identification from ambient vibration measurements on a bridge. J. Sound.Vib. 205(1) (1997) 1–18.doi:10.1006/jsvi.1997.0977
- O.S. Salawu, Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9) (1997) 718–23. doi:10.1016/S0141-0296(96)00149-6
- A.P. Adewuyi, Z. Wu, N.H.M.K. Serker, Assessment of vibration-based damage identification methods using displacement and distributed strain measurements. Struct. Health. Monit. 8(6) (2009) 443–61. doi:10.1177/1475921709340964
- F.R. Piazzaroli Finottia, C.A. Abrahão, B.F. Souza, An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements. Lat. Am. J. Solids. Struct. 16(2) (2019). doi:10.1590/1679-78254942
- G. Gui, H. Pan, Z. Lin, Y. Li, Z. Yuan, Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection. KSCE J. Civil. Eng. 21(2) (2016) 523–534. doi:10.1007/s12205-017-1518-5
- M. Noori, Y. Cao, Z. Hou, S. Sharma, Application of support vector machine for reliability assessment and structural health monitoring. Inter. J. Eng. Under. Uncertainty: Hazards. Assess. Mitigation. 2(3-4) (2010) 89-98.
- R. Ghiasi, P. Torkzadeh, M. Noori, A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function. Struct. Health. Monit. 15(3) (2016) 302-316. doi:10.1177/1475921716639587
- S.D. Silva, J.A.S. Paixão, Extrapolation of Autoregressive Models for Structural Health Monitoring. In: Proceedings of the 7th International Symposium on Solid Mechanics, São Carlos, 2019.
- X. Xie, J. Guo, H. Zhang, T. Jiang, R. Bie, Y. Sun, Neural-network based structural health monitoring with wireless sensor networks. In: Proceedings of the 9th International Conference on Natural Computation (ICNC), Shenyang, 2013, pp. 163-167.
- S. Khatir, K. Dekemele, M. Loccufier, T. Khatir, M. Abdel Wahab, Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization. Comptes. Rendus. Mécanique, 346(2) (2018) 110-120.doi:org/10.1016/j.crme.2017.11.008
- R. Zenzen, I. Belaidi, S. Khatir, M. Abdel Wahab, A damage identification technique for beam-like and truss structures based on FRF and Bat Algorithm. Comptes Rendus Mécanique. 346(12) (2018) 1253-1266 doi:10.1016/j.crme.2018.09.003
- S. Khatir, M. Abdel Wahab, Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm. Eng. Fract. Mech. 205 (2019) 285-300. doi:10.1016/j.engfracmech.2018.09.032
- H. Tran-Ngoc, S. Khatir, T. Le-Xuan, G. De Roeck, T. Bui-Tien, M. Abdel Wahab, A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures. Int. J. Eng. Sci. 157 (2020) 103376. doi:10.1016/j.ijengsci.2020.103376
- R. Zenzen, S. Khatir, I. Belaidi, C.L. Thanh, M. Abdel Wahab, A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures. Compos. Struct. 248 (2020) 112497. doi:10.1016/j.compstruct.2020.112497
- S. Khatir, S. Tiachacht, C.L. Thanh, T.Q. Bui, M. Abdel Wahab, Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator. Compos. Struct. 230 (2019) 111509. doi:10.1016/j.compstruct.2019.111509
- I. Tabian, H. Fu, Z.S. Khodaei, A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures. Sens. 19(22) (2019)1-25. doi:10.3390/s19224933
- Z. Tang, Z. Chen, Y. Bao, H. Li, Convolutional neural network‐based data anomaly detection method using multiple information for structural health monitoring. Struct. Control. Health. Monit. 26(1) (2019). doi:10.1002/stc.2296
- S. Malek, F. Melgani, Y. Bazi, One‐dimensional convolutional neural networks for spectroscopic signal regression. J. Chemom. 32 (2018) 1-17. doi:10.1002/cem.2977
- B.N. Dung, B.T. Thanh, N.T. Hieu, M. Abdel Wahab, R.D. Guido, Damaged Detection in Structural Health Monitoring using Handcrafted Features and Convolution Neural Network. In: Proceedings of 1st International Conference on Structural Damage Modelling and Assessment, Belgium, 2020.
- E. Figueiredo, G. Park, J. Figueiras, C. Farrar, K. Worden, Structural Health Monitoring Algorithm Comparisons using Standard Data Sets. Los Alamos National Laboratory LA-14393, 2009. doi:10.2172/961604
- Y. Le Cun, B.E. Boser, J.S. Denker, D. Henderson, R.E. Howard,W.E. Hubbard, L.D. Jackel, Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems; MIT Press: Cambridge, 1990, pp. 396–404.
- C. Olah, Understanding LSTM Networks, 2015. http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- A. Tharwat, Classification assessment methods In: Applied Computing and Informatics (2018).
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN 2170-127X
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.