A Solar energy, to the test of the great glass stage in contemporary Architecture in Saharan environment

Khadidja KHENCHA, Ratiba Wided BIARA, Hocine BELMILI


Currently, the façades of the desert buildings have witnessed and remarkably widespread use of glass. But, without any regard to the lowest harsh climate data. However, this exaggerated use of glass in the contemporary facades of the buildings may cause many problems, especially at the level of thermal comfort of the user. Hence, the excessive energy consumption resulting from heat exchange through the glass.

       With the current technological developments and the development of new and advanced building materials of glass, who can be used to reduce excessive energy consumption. Among these, materials are insulating glass and energy-producing at the same time. However, how effective is this type of glass in contemporary desert architecture? What is their efficiency at the level of thermal performance inside the building and even on the level of user comfort (heat exchange, production, and energy-saving)?

     To find out, a comparative study was conducted between four types of glazing materials used in contemporary architecture, Simple Glazing (i), Double Glazing (ii), Semi-Transparent Photovoltaic (STPV) (iii), and the Vacuum Photovoltaic Insulated Glass Unit (VPV IGU) (iv).  Before the simulation, an overview of the history of the use of glass in contemporary buildings in Algeria in general and in desert regions, in particular, was presented. After that, the most important results of the comparison study are presented according to the simulation software TRNSYS.


Harsh climate. Contemporary facades. Glazing materials. Thermal performance. (STPV) Semi-transparent photovoltaic. (VPV IGU) Vacuum Photovoltaic Insulated Glass Unit. TRNSYS.

Full Text:



- « BP Energy Outlook | Energy economics | BP », bp.com. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html (consulté le sept. 10, 2018).

- N.S. Lewis, G.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 103(43) (2006), 15729-15735. doi:10.1073/pnas.0603395103.

- R. Wilson, A. Young, The embodied energy payback period of photovoltaic installations applied to buildings in the UK. Build. Environ. 31(4) (1996) 299-305. doi:10.1016/0360-1323(95)00053-4.

- A.G. Hestnes, Building integration of solar energy systems. Sol. Energy. 67(4-6) (1999) 181-187. doi:10.1016/S0038-092X(00)00065-7.

- B.P. Jelle, C. Breivik, H.D. Røkenes, Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Sol. Energy. Mater. Sol. Cells. 100(2012) 69-96. doi:10.1016/j.solmat.2011.12.016.

- T. Salem, E. Kinab, Analysis of building-integrated photovoltaic systems: a case study of commercial buildings under Mediterranean Climate. Prod. Eng. 118(2015) 538-545. doi:10.1016/j.proeng.2015.08.473.

- J. Park, D. Hengevoss, S. Wittkopf, Industrial data-based life cycle assessment of architecturally integrated glass-glass photovoltaics. Build. 9(1) (2019) 8. doi:10.3390/buildings9010008.

- S.S.S. Baljit, H.Y. Chan, K. Sopian, Review of building integrated applications of photovoltaic and solar thermal systems. J. Cleaner. Prod. 137(2016) 677-689. doi:10.1016/j.jclepro.2016.07.150.

- D.E. Attoye, T.O. Adekunle, K.A. Tabet Aoul, A Hassan, S.O. Attoye, A conceptual framework for a building integrated photovoltaics (BIPV) educative-communication approach. Sustainability 10(10) (2018) 3781. doi:10.3390/su10103781.

- A.M. Shirazi, Z.S. Zomorodian, M. Tahsildoost, Techno-economic BIPV evaluation method in urban areas. Renewable Energy. 143(2019) 1235-1246. doi:10.1016/j.renene.2019.05.105.

- H. Gholami, H.N. Røstvik, D. Müller-Eie, Holistic economic analysis of building integrated photovoltaics (BIPV) system: Case studies evaluation. Energy. Build. 203(2019) 109461. doi:10.1016/j.enbuild.2019.109461.

- S.L. Do, M. Shin, J.C. Baltazar, J. Kim. Energy benefits from semi-transparent BIPV window and daylight-dimming systems for IECC code-compliance residential buildings in hot and humid climates. Sol. Energy. 155(2017) 291-303. doi:10.1016/j.solener.2017.06.039.

- M.C. Brito, S. Freitas, S. Guimarães, C. Catita P. Redweik. The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data. Renewable Energy. 111(2017) 85-94. doi:10.1016/j.renene.2017.03.085.

- G.N. Tiwari, R.K. Mishra, S.C. Solanki, Photovoltaic modules and their applications: a review on thermal modelling. Appl. Energy. 88(7) (2011) 2287-2304. doi:10.1016/j.apenergy.2011.01.005.

- R. Sharma, G.N. Tiwari, Technical performance evaluation of stand-alone photovoltaic array for outdoor field conditions of New Delhi. Appl. Energy. 92(2012) 644-652. doi:10.1016/j.apenergy.2011.06.033.

- B. Parida, S. Iniyan, R. Goic. A review of solar photovoltaic technologies. Renewable Sustainable Energy Rev. 15(3) (2011) 1625-1636. doi:10.1016/j.rser.2010.11.032.

- L. OLIVIERI, E. CAAMAÑO-MARTIN, F. OLIVIERI, J. Neila, Integral energy performance characterization of semi-transparent photovoltaic elements for building integration under real operation conditions. Energy Build. 68(2014) 280-291. doi:10.1016/j.enbuild.2013.09.035.

- T. Miyazaki, A. Akisawa, T. Kashiwagi. Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renewable Energy 30(3) (2005) 281-304. doi:10.1016/j.renene.2004.05.010.

- M. Wang, J. Peng, N. Li, L. Lu, T. Ma, H. Yang. Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model. Energy 112(2016) 538-548. doi:10.1016/j.energy.2016.06.120

- K. Kapsis, A.K. Athienitis. A study of the potential benefits of semi-transparent photovoltaics in commercial buildings. Sol. Energy.115(2015) 120-132. doi:10.1016/j.solener.2015.02.016.

- W.J.R. Curtis, L'architecture moderne depuis 1900. Phaidon, 2006.

- R. André, Le M’zab une leçon d'architecture, édit. Sindbad, Paris, 1981.

- A. Rapoport, Some perspectives on human use and organization of space. A. Rapoport, 1972.

- E. Gratia, A. De Herde. Thermique des immeubles de bureaux. Ed. Presses Universitaires de Louvain, 2006.

- H. Manz, U.P. Menti. Energy performance of glazings in European climates. Renewable Energy. 37(1) (2012) 226-232. doi:10.1016/j.renene.2011.06.016.

- A. Gustavsen, B.P. Jelle, D. Arasteh, C. Kohler. State-of-the-art highly insulating window frames–Research and market review. Norges byggforskningsinstitutt, 2007.

- C. Qiu, H. Yang, W. Zhang. Investigation on the energy performance of a novel semi-transparent BIPV system integrated with vacuum glazing. Build. Simul. 12(1) (2019) 29-39. doi:10.1007/s12273-018-0464-6.

- G. Barone, A. Buonomano, F. Calise, C. Forzano, A. Palombo. Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies. Renewable Sustainable Energy Rev. 101(2019) 625-648. doi:10.1016/j.rser.2018.11.003.

- A.L.S. Chan. Evaluating the impact of photovoltaic systems on the thermal performance of buildings and its implication to building energy code. A case study in subtropical Hong Kong. Energy Policy 119(2018) 674-688. doi:10.1016/j.enpol.2018.04.041.

- R.H.E. Hassanien, M. Li, F. Yin. The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production. Renewable Energy, 121(2018,) 377-388. doi:10.1016/j.renene.2018.01.044.

- A. Ghosh, S. Sundaram, T.K. Mallick. Colour properties and glazing factors evaluation of multicrystalline based semi-transparent Photovoltaic-vacuum glazing for BIPV application. Renewable Energy, 131(2019) 730-736. doi:10.1016/j.renene.2018.07.088.

- K.H. Solangi, M.R. Islam, R. Saidur, N.A. Rahim H. Fayaz. A review on global solar energy policy. Renewable Sustainable Energy Rev. 15(4) (2011) 2149-2163. doi:10.1016/j.rser.2011.01.007.

- M. Tripathy, P.K. Sadhu, Building Integrated Photovoltaic Market trend and its Applications. Telkomnika Indones J. Electr. Eng. 14(2) (2015) 185-190. doi:10.11591/telkomnika.v14i2.7338.

- S. Aguacil Moreno, S. Lufkin, E. Rey, Integrated design strategies for renovation projects with Building-Integrated Photovoltaics towards Low-Carbon Buildings: Two comparative case studies in Neuchâtel (Switzerland). Infoscience, EPFL Scientific Publications, 2017

- N. Martín-Chivelet, J.C. Gutiérrez, M. Alonso-Abella, F. Chenlo, J. Cuenca. Building retrofit with photovoltaics: Construction and performance of a BIPV ventilated façade. Energies, 11(7) (2018) 1719. doi:10.3390/en11071719.

- H.H. Majid. Giving a Chance to the Green Energy to Save our Planet Future. J. Econ. Develop. Environ. People 8(3) (2019) 60-66. doi:10.26458/jedep.v8i3.636.

- N.G. Poh Khai, N. Mithraratne, Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics. Renewable Sustainable Energy Rev. 31(2014) 736-745. doi:10.1016/j.rser.2013.12.044.

- R.J. Yang, P.X.W. Zou, Building integrated photovoltaics (BIPV): Costs, benefits, risks, barriers and improvement strategy. Int. J. Const. Manag. 16(1) (2016) 39-53. doi:10.1080/15623599.2015.1117709.

- M. Pagliaro, R. Ciriminna, G. Palmisano, BIPV: merging the photovoltaic with the construction industry. Prog. Photovoltaics Res. Appl. 18(1) (2010) 61-72. doi:10.1002/pip.920.

- J.W. Lee, H.J. Jung, J.Y. Park, J.B. Lee, Y. Yoonb, Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 50(2013) 522-531. doi:10.1016/j.renene.2012.07.029.

- Y. Song, N. Mithraratne, H. Zhang, Life-time performance of post-disaster temporary housing: A case study in Nanjing. Energy Build. 128(2016) 394-404. doi:10.1016/j.enbuild.2016.07.019.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.