Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches

Balraj SINGH, Parveen SIHAG, Anjul TOMAR, Ankush SEHGAL

Abstract


High strength concrete (HSC) define as the concrete that meets a unique mixture of performance uniformity requirements that cannot be reached routinely using conventional constituents and regular mixing, placing, and curing events. The modeling of such type of concrete is very difficult. In this investigation, the performance of the random forest regression and M5P model tree were compared to estimate the 28th day compressive strength of the HSC. Total data set consists of 83 data out of which 70 % of the total dataset used to train the model and residual 30 % used to test the models. The accuracy of the models was depending upon the three performance evaluation parameters which are correlation coefficient (R), root mean square error (RMSE) and maximum absolute error (MAE). The results recommend that random forest regression is more accurate to predict the compressive strength as compare to M5P model tree. Sensitivity analysis indicates that water (W) and Silica fumes (SF) are the most valuable constituents of the HSC and compressive strength mainly depends on these constituents.


Keywords


High strength concretes; M5P model tree; Random forest; Silica fume

Full Text:

PDF

References


- S.P. Shah, Recent trends in the science and technology of concrete. In: Concrete Technology: New Trends, Industrial Applications, Proceedings of the International RILEM workshop, Ed. A. Aguado, R. Gettu, S. Shah, 1994. doi:10.1201/9781482271584

- H. Bache, Densified Concrete/Ultrafine Particle-Based Materials. In: Proceedings of the 2nd Conference on Superplasticizers in Concrete, Ottawa, 1981.

- A. Camões, J.L. Aguiar, S. Jalali, Durability of low cost high performance fly ash concrete. In: Proceedings of the International Ash utilization symposium, Kentucky, 2003, paper 43.

- A. Mittal, P.C. Basu, Development of HPC for PC Dome of NPP, Kaiga. Indian Concrete J. 73(9) (1999) 548-560.

- K. Sobolev, The development of a new method for the proportioning of high-performance concrete mixtures. Cement Concrete Comp. 26(7) (2004) 901-907. doi:10.1016/j.cemconcomp.2003.09.002

- B.H. Bharatkumar, R. Narayanan, B.K. Raghuprasad, D.S. Ramachandramurthy, Mix proportioning of high performance concrete. Cement Concrete Comp. 23(1) (2001) 71-80. doi:10.1016/S0958-9465(00)00071-8

- M.Y. Mansour, M. Dicleli, J.Y. Lee, J. Zhang, Predicting the shear strength of reinforced concrete beams using artificial neural networks. Eng. Struct. 26(6) (2004) 781-799. doi:10.1016/j.engstruct.2004.01.011

- P. Sihag, N.K. Tiwari, S. Ranjan, Modelling of infiltration of sandy soil using gaussian process regression. Mod. Earth Syst. Environ. 3(3) (2017) 1091-1100. doi:10.1007/s40808-017-0357-1

- P. Sihag, N.K. Tiwari, S. Ranjan, Prediction of unsaturated hydraulic conductivity using adaptive neuro-fuzzy inference system (ANFIS). ISH J. Hydraul. Eng. 25(2) (2019) 1-11. doi:10.1080/09715010.2017.1381861

- M.A. Ghorbani, R. Khatibi, A. Goel, M.H. FazeliFard, A. Azani, Modeling river discharge time series using support vector machine and artificial neural networks. Environ. Earth Sci. 75(8) (2016) 685. doi:10.1007/s12665-016-5435-6

- A. Öztaş, M. Pala, M., E. Özbay, E. Kanca, N. Caglar, M.A. Bhatti, Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 20(9) (2006) 769-775. doi:10.1016/j.conbuildmat.2005.01.054

- M.T. Sattari, M. Pal, R. Mirabbasi, J. Abraham, Ensemble of M5 Model Tree Based Modelling of Sodium Adsorption Ratio. J. Artif. Intell. Data Mining 6(1) (2018) 69-78. doi:10.22044/JADM.2017.5540.1663

- B. Singh, P. Sihag, K. Singh, Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model. Earth Syst. Environ. 3(3) (2017) 999-1004. doi:10.1007/s40808-017-0347-3

- M. Pal, N.K. Singh, N.K. Tiwari, M5 model tree for pier scour prediction using field dataset. KSCE J. Civil Eng. 16(6) (2012) 1079-1084. doi:10.1007/s12205-012-1472-1

- M. Pal, S. Deswal, M5 model tree based modelling of reference evapotranspiration. Hydrol. Proces. 23(10) (2009) 1437-1443. doi:10.1002/hyp.7266

- G. Singh, S.N. Sachdeva, M. Pal, M5 model tree based predictive modeling of road accidents on non-urban sections of highways in India. Accid. Anal. Prev. 96 (2016) 108-117. doi:10.1016/j.aap.2016.08.004

- M. Pal, N.K. Singh, N.K. Tiwari, Pier scour modelling using random forest regression. ISH J. Hydraul. Eng. 19(2) (2013) 69-75. doi:10.1080/09715010.2013.772763

- P.O. Gislason, J.A. Benediktsson, J.R. Sveinsson, Random forests for land cover classification. Pattern Recogn. Lett. 27(4) (2006) 294-300. doi:10.1016/j.patrec.2005.08.011

- M. Pal, Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1) (2005) 217-222. doi:10.1080/01431160412331269698

- J.R. Quinlan, Learning with continuous classes. In: Proceedings of 5th Australian joint conference on artificial intelligence, Hobart, 1992, pp. 343-348. doi: 10.1142/9789814536271

- L. Breiman, Bagging predictors. Mach. Learn. 24(2) (1996) 123-140. doi:10.1007/BF00058655

- L. Breiman, J. Friedman, J. H., C.J. Stone, R.A. Olshen, Classification and regression trees. Chapman and Hall/CRC, First Edition, 1984.

- P.S. Song, S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 18(9) (2004) 669–673. doi:10.1016/j.conbuildmat.2004.04.027

- R. Demirboğa, R. Gül, Production of high strength concrete by use of industrial by-products. Build. Environ. 41(8) (2006) 1124-1127. doi:10.1016/j.buildenv.2005.04.023

- V. Sata, C. Jaturapitakkul, K. Kiattikomol, Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. Constr. Build. Mater. 21(7) (2007) 1589-1598. doi:10.1016/j.conbuildmat.2005.09.011

- T. Yen, T.H. Hsu, Y.W. Liu, S.H. Chen, Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete. Constr. Build. Mater. 21(2) (2007) 458-463. doi:10.1016/j.conbuildmat.2005.06.051

- A. Behnood, H. Ziari, Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cement Concrete Comp. 30(2) (2008) 106-112. doi:10.1016/j.cemconcomp.2007.06.003

- F. Köksal, F. Altun, I. Yiğit, Y. Şahin, Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr. Build. Mater. 22(8) (2008) 1874-1880. doi:10.1016/j.conbuildmat.2007.04.017

- M. Mazloom, Estimating long-term creep and shrinkage of high-strength concrete. Cement Concrete Comp. 30(4) (2004) 316-326. doi:10.1016/j.cemconcomp.2007.09.006

- M.M. Smadi, I.B. Yasin, Behavior of high-strength fibrous concrete slab–column connections under gravity and lateral loads. Constr. Build. Mater. 22(8) (2008) 1863-1873. doi:10.1016/j.conbuildmat.2007.04.023

- K.S. Al-Jabri, M. Hisada, A.H. Al-Saidy, S.K. Al-Oraimi, Performance of high strength concrete made with copper slag as a fine aggregate. Constr. Build. Mater. 23(6) (2009) 2132-2140. doi:10.1016/j.conbuildmat.2008.12.013

- M.S. Cülfik, T. Özturan, Mechanical properties of normal and high strength concretes subjected to high temperatures and using image analysis to detect bond deteriorations. Constr. Build. Mater. 24(8) (2010) 1486-1493. doi:10.1016/j.conbuildmat.2010.01.020

- A. Elahi, P.A.M. Basheer, S.V. Nanukuttan, Q.U.Z. Khan, Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 24(3) (2010) 292-299. doi:10.1016/j.conbuildmat.2009.08.045

- Z.J. He, Y.P. Song, Multiaxial tensile–compressive strengths and failure criterion of plain high-performance concrete before and after high temperatures. Constr. Build. Mater. 24(4) (2010) 498-504. doi:10.1016/j.conbuildmat.2009.10.012

- K. Holschemacher, T. Mueller, Y. Ribakov, Effect of steel fibres on mechanical properties of high-strength concrete. Mater. Des. 31(5) (2010) 2604-2615. doi:10.1016/j.matdes.2009.11.025

- W. Wu, W. Zhang, G. Ma, Optimum content of copper slag as a fine aggregate in high strength concrete. Mater. Des. 31(6) (2010) 2878-2883. doi:10.1016/j.matdes.2009.12.037.

- M.A.M. Johari, J.J. Brooks, S. Kabir, P. Rivard, Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 25(5) (2011) 2639-2648. doi:10.1016/j.conbuildmat.2010.12.013

- S.N. Raman, T. Ngo, P. Mendis, H.B. Mahmud, High-strength rice husk ash concrete incorporating quarry dust as a partial substitute for sand. Constr. Build. Mater. 25(7) (2011) 3123-3130. doi:10.1016/j.conbuildmat.2010.12.026

- Y. Şahin, F. Köksal, The influences of matrix and steel fibre tensile strengths on the fracture energy of high-strength concrete. Constr. Build. Mater. 25(4) (2011) 1801-1806. doi:10.1016/j.conbuildmat.2010.11.084

- M. Kumar, P. Sihag, V. Singh, Enhanced soft computing for ensemble approach to estimate the compressive strength of high strength concrete. J. Mater. Eng. Struct. 6(1) (2019) 93-103.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.