Enhanced soft computing for ensemble approach to estimate the compressive strength of high strength concrete

Munish KUMAR, Parveen SIHAG, Varun SINGH

Abstract


High strength concrete (HCS) define as the concrete that meets unique mixture of performance uniformity requirements that cannot be reached routinely using conventional constituents and regular mixing, placing, and curing events. The modeling of such type of concrete is very difficult. In this investigation, the performance of the gaussian process (GP) regression, support vector Machine (SVM) and artificial neural network (ANN) were compared to estimate the 28th day compressive strength of the HSC. Total data set consists of 83 data out of which 70 % of total dataset used to train the model and residual 30% used to test the models. The model accuracy was depend upon the five performance evaluation parameter which were correlation coefficient (R), Bias, mean square error (MAE), root mean square error (RMSE) and Nash-Sutcliffe model efficiency (E). The results recommend that ANN model is more accurate to predict the compressive strength as compare to GP and SVM based models. Sensitivity analysis indicated that Cement (C), Silica fume (SF), Fly ash (FA) and Water (W) are the most valuable constituents in which compressive strength of the HCS is mainly depend for this data set.

Keywords


High strength concretes; Gaussian process; Support vectors Machine; artificial neural network

Full Text:

PDF

References


- H.H. Bache, Densified Concrete/Ultrafine Particle-Based Materials. In: Proceedings of the 2nd Conference on Superplasticizers in Concrete, Ottawa, Canada, 1981.

- S.P. Shah, Recent trends in the science and technology of concrete. In: Concrete Technology: New Trends, Industrial Applications: Proceedings of the International RILEM workshop, CRC Press, 1994.

- A. Camões, B. Aguiar, S. Jalali, Durability of low cost high performance fly ash concrete. In: Proceedings of the International Ash Utilization Symposium, University of Kentucky, 2003.

- A. Mittal, P. C. Basu, Development of HPC for PC Dome of NPP, Kaiga. Indian Concrete J. 73 (1999) 548-560.

- K. Sobolev, The development of a new method for the proportioning of high-performance concrete mixtures. Cement Concrete Compos. 26(7) (2004) 901-907. doi:10.1016/j.cemconcomp.2003.09.002

- B.H. Bharatkumar, R. Narayanan, B.K. Raghuprasad, D.S. Ramachandramurthy, Mix proportioning of high performance concrete. Cement Concrete Compos. 23(1) (2001) 71-80. doi:10.1016/S0958-9465(00)00071-8

- M.Y. Mansour, M. Dicleli, J.Y. Lee, J. Zhang, Predicting the shear strength of reinforced concrete beams using artificial neural networks. Eng. Struct. 26(6) (2004) 781-799. doi:10.1016/j.scient.2012.02.009

- P. Aggarwal, Y. Aggarwal, R. Siddique, S. Gupta, H. Garg, Fuzzy logic modeling of compressive strength of high-strength concrete (HSC) with supplementary cementitious material. J. Sustain. Cement. Mater. 2(2) (2013) 128-143. doi:10.1080/21650373.2013.801800

- P. Sihag, N. K. Tiwari, S. Ranjan, Estimation and inter-comparison of infiltration models. Water Sci. 31(1) (2017) 34-43. doi:10.1016/j.wsj.2017.03.001

- P. Sihag, P. Jain, M. Kumar, Modelling of impact of water quality on recharging rate of storm water filter system using various kernel function based regression. Model. Earth Syst. Environ. (2018) 1-8. doi:10.1007/s40808-017-0410-0

- S. S. Nain, D. Garg, S. Kumar, Prediction of the Performance Characteristics of WEDM on Udimet-L605 Using Different Modelling Techniques. Mater. Today-Proc. 4(2) (2017) 546-556. doi:10.1016/j.matpr.2017.01.056

- A. Öztaş, M. Pala, E. Özbay, E. Kanca, N. Caglar, M.A. Bhatti, Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 20(9) (2006) 769-775. doi:10.1016/j.conbuildmat.2005.01.054

- U. Atici, Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Applications 38(8) (2011) 9609-9618. doi:10.1016/j.eswa.2011.01.156

- J.S. Chou, A.D. Pham, Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength. Constr. Build. Mater. 49 (2013) 554-563. doi:10.1016/j.conbuildmat.2013.08.078

- A.T.A. Dantas, M.B. Leite, K.D.J. Nagahama, Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Constr. Build. Mater. 38 (2013) 717-722. doi:10.1016/j.conbuildmat.2012.09.026

- C.E. Rasmussen, C.K. Williams, Gaussian processes for machine learning. The MIT Press, 2006.

- M. Kuss, Gaussian process models for robust regression, classification, and reinforcement learning. PhD Thesis, TechnischeUniversität, 2006.

- V. Vapnik, Statistical learning theory. Wiley, New York, 1998.

- A.J. Smola, Regression estimation with support vector learning machines. Master’s thesis, Technische Universität München, 1996.

- C. Cortes, V. Vapnik. Support-vector networks. Mach. Learn. 20(3) (1995) 273-297. doi:10.1007/BF00994018

- P.S. Song, S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 18(9) (2004) 669-673. doi:10.1016/j.conbuildmat.2004.04.027

- R. Demirboğa, R. Gül, Production of high strength concrete by use of industrial by-products. Build. Environ. 41(8) (2006) 1124-1127. doi:10.1016/j.buildenv.2005.04.023

- V. Sata, C. Jaturapitakkul, K. Kiattikomol, Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. Constr. Build. Mater. 21(7) (2007) 1589-1598. doi:10.1016/j.conbuildmat.2005.09.011

- T. Yen, T.H. Hsu, Y.W. Liu, S.H. Chen, Influence of class F fly ash on the abrasion–erosionresistance of high-strength concrete. Constr. Build. Mater. 21(2) (2007) 458-463. doi:10.1016/j.conbuildmat.2005.06.051

- A. Behnood, H. Ziari, Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cement Concrete Compos. 30(2) (2008) 106-112. doi:10.1016/j.cemconcomp.2007.06.003

- F. Köksal, F. Altun, İ. Yiğit, Y. Şahin, Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr. Build. Mater. 22(8) (2008) 1874-1880. doi:10.1016/j.conbuildmat.2007.04.017

- M Mazloom, Estimating long-term creep and shrinkage of high-strength concrete. Cement Concrete Compos. 30(4) (2008) 316-326. doi:10.1016/j.cemconcomp.2007.09.006

- M. M. Smadi, I.S. Bani Yasin. Behavior of high-strength fibrous concrete slab–column connections under gravity and lateral loads. Constr. Build. Mater. 22(8) (2008) 1863-1873. doi:10.1016/j.conbuildmat.2007.04.023

- K.S. Al-Jabri., M. Hisada, A.H. Al-Saidy, S.K. Al-Oraimi, Performance of high strength concrete made with copper slag as a fine aggregate. Constr. Build. Mater. 23(6) (2009) 2132-2140. doi:10.1016/j.conbuildmat.2008.12.013

- M.S. Cülfik, T. Özturan, Mechanical properties of normal and high strength concretes subjected to high temperatures and using image analysis to detect bond deteriorations. Constr. Build. Mater. 24(8) (2010) 1486-1493. doi:10.1016/j.conbuildmat.2010.01.020

- A. Elahi, P.A.M. Basheer, S.V. Nanukuttan, Q.U.Z. Khan, Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 24(3) (2010) 292-299. doi:10.1016/j.conbuildmat.2009.08.045

- Z.J. He, Y.P. Song, Multiaxial tensile–compressive strengths and failure criterion of plain high-performance concrete before and after high temperatures. Constr. Build. Mater. 24(4) (2010) 498-504. doi:10.1016/j.conbuildmat.2009.10.012

- K. Holschemacher, T. Mueller, Y. Ribakov, Effect of steel fibres on mechanical properties of high-strength concrete. Mater. Des. (1980-2015) 31(5) (2010) 2604-2615. doi:10.1016/j.matdes.2009.11.025

- W. Wu, W. Zhang, G. Ma, Optimum content of copper slag as a fine aggregate in high strength concrete. Mater. Des. 31(6) (2010) 2878-2883. doi:10.1016/j.matdes.2009.12.037

- M.A.M. Johari, J.J. Brooks, S. Kabir, P. Rivard, Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 25(5) (2011) 2639-2648. doi:10.1016/j.conbuildmat.2010.12.013

- S.N. Raman, T. Ngo, P. Mendis, H.B. Mahmud, High-strength rice husk ash concrete incorporating quarry dust as a partial substitute for sand. Constr. Build. Mater. 25(7) (2011) 3123-3130. doi:10.1016/j.conbuildmat.2010.12.026

- Y. Şahin, F. Köksal, The influences of matrix and steel fibre tensile strengths on the fracture energy of high-strength concrete. Constr. Build. Mater. 25(4) (2011) 1801-1806. doi.org/10.1016/j.conbuildmat.2010.11.084


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.