Reviewing the Carbonation Resistance of Concrete

S P Singh, N Singh


The paper reviews the studies on one of the important durability properties of concrete i.e. Carbonation. One of the main causes of deterioration of concrete is carbonation, which occurs when carbon dioxide (CO2) penetrates the concrete’s porous system to create an environment with lower pH around the reinforcement in which corrosion can proceed. Carbonation is a major cause of degradation of concrete structures leading to expensive maintenance and conservation operations. Herein, the importance, process and effect of various parameters such as water/cement ratio, water/binder ratio, curing conditions, concrete cover, super plasticizers, type of aggregates, grade of concrete, porosity, contaminants, compaction, gas permeability, supplementary cementitious materials (SCMs)/ admixtures on the carbonation of concrete has been reviewed. Various methods for estimating the carbonation depth are also reported briefly


Carbonation; Normally vibrated concrete; Recycled aggregate concrete; Self compacting concrete

Full Text:



- T.Y. Lo, W.C. Tang, A. Nadeem, Comparison of carbonation of lightweight concrete with normal weight concrete at similar strength levels. Constr. Build. Mater. 22(8) (2008) 1648–1655. doi:10.1016/j.conbuildmat.2007.06.006

- J.B. Aguiar, J. Cristela, Carbonation of surface protected concrete. Constr. Build. Mater. 49 (2013) 478–483. doi:10.1016/j.conbuildmat.2013.08.058

- T. Gonen, S. Yazicioglu, The influence of mineral admixtures on the short and long-term performance of concrete. Build. Environ. 42 (2007) 3080–3085. doi:10.1016/j.buildenv.2006.10.019

- D.W.S. Ho, R.K. Lewis, Carbonation of concrete and its prediction. Cement Concrete Res. 17(3) (1987) 489-504. doi:10.1016/0008-8846(87)90012-3

- Y. Lo, H.M. Lee, Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy. Build. Environ. 37(5) (2002) 507 – 514. doi:10.1016/S0360-1323(01)00052-X

- N.I. Fattuhi, Carbonation of concrete as affected by mix constituent and initial water curing period. Mater. Struct. 19(2) (1986) 131-136. doi:10.1007/BF02481757

- H. Al Khaiat, N. Fattuhi, Carbonation of concrete exposed to hot and arid climate. J. Mater. Civil Eng-ASCE. 14(2) (2002) 97-107. doi:10.1061/(ASCE)0899-1561(2002)14:2(97)

- N.I. Fattuhi, Concrete carbonation as influenced by curing regime. Cement Concrete Res. 18(3) (1988) 426-30. doi:10.1016/0008-8846(88)90076-2

- J.P. Balayssac, Ch.H. Dériché, J. Grandet, Effects of curing upon carbonation of concrete. Constr. Build. Mater. 9(2) (1995) 91-95. doi:10.1016/0950-0618(95)00001-V

- C.D. Atis, Accelerated carbonation and testing of concrete made with fly ash. Constr. Build. Mater. 17(3) (2003) 147–152. doi:10.1016/S0950-0618(02)00116-2

- P. Sulapha, S.F. Wong, T.H. Wee, S. Swaddiwudhipong, Carbonation of concrete containing mineral admixtures. J. Mater. Civil Eng-ASCE. 15(2) (2003) 134-143. doi:10.1061/(ASCE)0899-1561(2003)15:2(134)

- W.P.S Dias, Reduction of concrete sorptivity with age through carbonation. Cement Concrete Res. 30(8) (2000) 1255-1261. doi:10.1016/S0008-8846(00)00311-2

- J. Bai, S. Wild, B.B. Sabir, Sorptivity and strength of air-cured and water-cured PC-PFA-MK concrete and the influence of binder composition on the carbonation depth. Cement Concrete Res. 32(11) (2002) 1823-1821. doi:10.1016/S0008-8846(02)00872-4

- A. Younsi, P. Turcry, E. Rozière, A. Aït-Mokhtar, A. Loukili, Performance-based design and carbonation of concrete with high fly ash content. Cement Concrete Comp. 33(10) (2011), 993–1000. doi:10.1016/j.cemconcomp.2011.07.005

- H.S. Shi, B.W. Xu, X.C. Zhou, Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr. Build. Mater. 23(5) (2009) 1980–1985. doi:10.1016/j.conbuildmat.2008.08.021

- P. Dinakar, K.G. Babu, M. Santhanam, Corrosion behaviour of blended cements in low and medium strength concretes. Cement Concrete Comp. 29(2) (2007) 136-145. doi:10.1016/j.cemconcomp.2006.10.005

- L. Jiang, B. Lin, Y. Cai, A model for predicting carbonation of high-volume fly ash concrete. Cement Concrete Res. 30(5) (2000) 690-702. doi:10.1016/S0008-8846(00)00227-1

- S. Monkman, Y. Shao, Carbonation Curing of Slag-Cement Concrete for Binding CO2 and Improving Performance. J. Mater. Civil Eng-ASCE. 22(4) (2010) 296-304. 10.1061/(ASCE)MT.1943-5533.0000018

- M.I. Khana, R. Siddique, Utilization of silica fume in concrete: Review of durability properties. Resou. Conserv. Recy. 57 (2011) 30–35. doi:10.1016/j.resconrec.2011.09.016

- T.Y. Lo, A. Nadeem, W.C.P. Tang, P.C. Yu, The effect of high temperature curing on the strength and carbonation of pozzolanic structural lightweight concretes. Constr. Build. Mater. 23(3) (2009) 1306–1310. doi:10.1016/j.conbuildmat.2008.07.026

- M.P. Kulakowski, F.M. Pereira, D.C.C. Dal Molin, Carbonation-induced reinforcement corrosion in silica fume concrete. Constr. Build. Mater. 23(3) (2009) 1189–1195. doi:10.1016/j.conbuildmat.2008.08.005

- O. Skjolsvold, Carbonation depths of concrete with and without condensed silica fume. ACI Special Publications. SP-91, (1986) 1031–1048.

- G. Grimaldi, J. Carpio, A. Raharinaivo, Effect of silica fume on carbonation and chloride penetration in mortars. In: Mohammed Alasali, editor. Third CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Naural Pozzolans in Concrete. (1989) 320–334.

- M. Valcuende, C. Parra, Natural carbonation of self-compacting concretes. Constr. Build. Mater. 24(5) (2010) 848–853. doi:10.1016/j.conbuildmat.2009.10.021

- M.R. Jones, R.K. Dhir, B.J. Magee, Concrete containing ternary blended binders: Resistance to chloride ingress and carbonation. Cement Concrete Res. 27(6) (1997) 825-831. doi:10.1016/S0008-8846(97)00075-6

- K. Audenaert, V. Boel, G. De Schutter, Carbonation of filler type self-compacting concrete. In: Proceedings of the 12th International Congress on the Chemistry of Cement (ICCC 2007), Montréal, Canada, 2007.

- E. Rozirre, A. Loukili, F. Cussigh, A performance based approach for durability of concrete exposed to carbonation. Constr. Build. Mater. 23(1) (2009) 190–199. doi:10.1016/j.conbuildmat.2008.01.006

- C.D. Atis. Carbonation-porosity-strength model for fly ash concrete. J. Mater. Civil Eng-ASCE. 16(1) (2004) 91-94. doi:10.1061/(ASCE)0899-1561(2004)16:1(91)

- T. Gonen, S. Yazicioglu, The influence of compaction pores on sorptivity and carbonation of concrete. Constr. Build. Mater. 21(5) (2007) 1040–1045. doi:10.1016/j.conbuildmat.2006.02.010

- A.M. Neville, Properties of concrete. Pearson Education Limited, 5th Edition. 2011.

- G. Villain, M. Thiery, G. Platret, Measurement methods of carbonation profiles in concrete: Thermo gravimetry, chemical analysis and gammadensimetry. Cement Concrete Res. 37 (2007) 1182–92. doi:10.1016/j.cemconres.2007.04.015

- T. He, C. Shi, G. Lin, X. Song, Effects of super plasticizers on the carbonation resistance of C3S and C3A hydration products. Constr. Build. Mater. 36 (2012) 954–959. doi:10.1016/j.conbuildmat.2012.06.071

- T. Bakharev, J.G. Sanjayana, Y.-B. Cheng, Resistance of alkali-activated slag concrete to carbonation. Cement Concrete Res. 31(9) (2001) 1277–1283. doi:10.1016/S0008-8846(01)00574-9

- K. Sisomphon, L. Franke, Carbonation rates of concretes containing high volume of pozzolanic materials. Cement Concrete Res. 37(12) (2007) 1647-1653. doi:10.1016/j.cemconres.2007.08.014

- R. Francois, J.C. Maso, Effect of damage in reinforced concrete on carbonation or chloride penetration. Cement Concrete Res. 18(6) (1988) 961-970. doi:10.1016/0008-8846(88)90033-6

- K. Kobayashi, Y. Uno, Influence of alkali on carbonation of concrete, Part 2-Influence of alkali in cement on rate of carbonation of concrete. Cement Concrete Res. 20(4) (1990) 619-622. doi:10.1016/0008-8846(90)90104-6

- M. Maslehuddin, C.L. Page, Rasheeduzzafar, Effect of temperature and salt contamination on carbonation of cements. J. Mater. Civil Eng-ASCE. 8(2) (1996) 63-69. doi:10.1061/(ASCE)0899-1561(1996)8:2(63)

- L. Bertolini, M. Carsana, E. Redaelli, Conservation of historical reinforced concrete structures damaged by carbonation induced corrosion by means of electrochemical re-alkalisation. J. Cult. Herit. 9(4) (2008) 376–385. doi:10.1016/j.culher.2008.01.006

- S.K. Roy, K. Poh, D.O. Northwood, Durability of concrete-accelerated carbonation and weathering studies. Build. Environ. 23(5) (1999) 486-595. doi:10.1016/S0360-1323(98)00042-0

- J.J. Chang, W. Yeih, R. Huang, C.T. Chen, Suitability of several current used concrete durability indices on evaluating the corrosion hazard for carbonated concrete. Mater. Chem. Phys. 84(1) (2004) 71–78. doi:10.1016/j.matchemphys.2003.10.016

- J. Khunthongkeaw, S. Tangtermsirikul, T. Leelawat, A study on carbonation depth prediction for fly ash. Constr. Build. Mater. 20(9) (2006) 744–753. doi:10.1016/j.conbuildmat.2005.01.052

- R. Zaharieva, F. Buyle-Bodins, F. Skoczylas, E. Wirquin, Assessment of the surface permeation properties of recycled aggregate concrete. Cement Concrete Comp. 25(2)(2003) 223–232. doi:10.1016/S0958-9465(02)00010-0

- L. Jiang, Z. Liu, Y. Ye, Durability of concrete incorporating large volumes of low-quality fly ash. Cement Concrete Res. 34(8) (2004) 1467-1469. doi:10.1016/j.cemconres.2003.12.029

- D.O. Mc Polin, P.A. Basheer, A.E. Long, K.T. Grattan, T. Sun, New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials. J. Mater. Civil Eng-ASCE. 19(11) (2007) 936-946. 10.1061/(ASCE)0899-1561(2007)19:11(936)

- V.G. Papadakis, Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cement Concrete Res. 30(2) (2000) 291-299. doi:10.1016/S0008-8846(99)00249-5

- S.P. Arredondo-Rea, R. Corral-Higuera, J.M. Gomez-Soberon, J.H. Castorena-Gonzalez, V. Orozco-Carmona, J.L. Almaral-Sánchez, Carbonation rate and reinforcing steel corrosion of concretes with recycled concrete aggregates and supplementary cementing materials. Int. J. Electrochem. Sci. 7 (2012) 1602–1610.

- S.C. Kou, C.S. Poon, Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Constr. Build. Mater. 35 (2012) 69–76. doi:10.1016/j.conbuildmat.2012.02.032

- M. Limbachiya, M.S. Meddah, Y. Ouchagour, Use of recycled concrete aggregate in fly-ash concrete. Constr. Build. Mater. 27(1) (2012) 439–449. doi:10.1016/j.conbuildmat.2011.07.023

- C. Thomas, J. Setien, J.A. Polanco, P. Alaejos, M. Sanchez de Juan, Durability of recycled aggregate concrete. Constr. Build. Mater. 40 (2013) 1054–1065. doi:10.1016/j.conbuildmat.2012.11.106

- S.C. Kou, C.S. Poon, Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cement Concrete Comp. 37 (2013) 12–19. doi:10.1016/j.cemconcomp.2012.12.011

- J. Sim, C. Park, Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate. Waste Manage. 31(11) (2011) 2352–2360. doi:10.1016/j.wasman.2011.06.014

- M.S. Cho, Y.C. Song, T. Koh, J.H. Kim, Durability evaluation of concrete using fly ash, In: Proceedings of Spring KCI Conference, Ansung, Korea. 2002, pp. 755–760.

- JH. Yoon, D.H. Lee, J.D. Chung, S.H. Bae, K.Y. Choi, Experimental study on concrete durability with various mineral additives, In: Proceedings of Spring KCI Conference, Chungju, Korea. 2003, pp. 787–792.

- V. Corinaldesi, G. Moriconi, Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr. Build. Mater. 23(8) (2009) 2869–2876. doi:10.1016/j.conbuildmat.2009.02.004

- K.K. Sideris, N.S. Anagnostopoulos, Durability of normal strength self-compacting concretes and their impact on service life of reinforced concrete structures. Constr. Build. Mater. 41 (2013) 491–497. doi:10.1016/j.conbuildmat.2012.12.042

- M.K. Mohammed, A.R. Dawson, N.H. Thom, Carbonation of filler typed self-compacting concrete and its impact on the microstructure by utilization of 100% CO2 accelerating techniques. Constr. Build. Mater. 50 (2014) 508–516. doi:10.1016/j.conbuildmat.2013.09.052

- S. Assié, G. Escadeillas, V. Waller, Estimates of self-compacting concrete ‘potential’ durability. Constr. Build. Mater. 21(10) (2007) 1909–1917. doi:10.1016/j.conbuildmat.2006.06.034


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at