Comparison of Different Local Unrefined Beam Theories for Bending and Nano Beams Buckling Analysis

hamza madjid berrabah, Adda Bedia El Abbas, Tounsi Abdelouahed

Abstract


In this study, non unified local shear deformation theory is proposed to consider the bending and buckling of nano beams. This theory is based on the assumption that the cross-sectional and planar displacements consist of bending and shear components, shear components do not contribute to the bending moments. Motion equations are derived using the Hamilton’s principle. Analytical solutions for deformation, buckling load, and the natural frequency are presented to a nano simply supported beam, and the results obtained are compared to those proposed by the nonlocal Timoshenko beam theory and Reddy beam theories


Keywords


Non local beam; Flexion; Buckling; Nano beam

References


- N.V. Lavrik, M.J. Sepaniak, P.G. Datskos, Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(2004), 2229-2253.

- K.L. Ekinci, M.L. Roukes, Nanoelectromechanical systems. Rev. Sci. Instrum., 76(6) (2005), 061101.

- S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys. 104(5) (1996), 2089 – 2092. doi:10.1063/1.470966

- B.I. Yakobson, M.P. Campbell, C.J. Brabec, J. Bernholc, High strain rate fracture and C-chain unraveling in carbon nanotubes, Comput. Mater. Sci. 8(4) (1997), 341 – 348.

- E. Hernandez, C. Goze, P. Bernier, A. Rubio, Elastic properties of C and BxCyNzcomposite nanotubes. Phys. Rev. Lett., 80(1998), 4502 – 4505. doi:10.1103/PhysRevLett.80.4502

- D. Sanchez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejo, Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B. 59(1999), 12678 – 12688.

- D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes. Appl. Mech. Rev. 55(6)(2002), 495 – 533.

- W.D. Nix, H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids, 46(3) (1998), 411–425. doi:10.1016/S0022-5096(97)00086-0

- H.M. Ma, X.L. Gao, J.N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids, 56(2008), 3379–3391. doi:10.1016/j.jmps.2008.09.007

- A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1)(1972), 1–16.

- Z.P. Bazant, M. Jirasek, Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Eng. Mech. 128(11) (2002) 1119–1149. doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

- J. Peddieson, G.R. Buchanan, R.P. McNitt, Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3–5) (2003), 305–312. doi:10.1016/S0020-7225(02)00210-0

- L.J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Physics, 94(11) (2003), 7281–7287. doi:10.1063/1.1625437

- K. Amara, A. Tounsi, I. Mechab, E.A. Adda Bedia, Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field. Appl. Math. Modelling, 34(12)(2010), 3933–3942.

- A.A. Pisano, P. Fuschi, Closed form solution for a nonlocal elastic bar in tension. Int. J. Solids Struct. 40(1) (2003), 13–23. doi:10.1016/S0020-7683(02)00547-4

- J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8) (2007), 288–307. doi:10.1016/j.ijengsci.2007.04.004

- J.N. Reddy, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48(11) (2010), 1507–1518. doi:10.1016/j.ijengsci.2010.09.020

- Y.Y. Zhang, C.M. Wang, N. Challamel, Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model. J. Eng. Mech. 136(5) (2010), 562–574. doi:10.1061/(ASCE)EM.1943-7889.0000107

- H. Heireche, A. Tounsi, A. Benzair, Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. J. Appl. Phys. 19(18)(2008), 185703. doi: 10.1088/0957-4484/19/18/185703.

- M. Maachou, M. Zidour, H. Baghdadi, N. Ziane, A. Tounsi, A nonlocal Levinson beam model for free vibration analysis of zigzag single-walled carbon nanotubes including thermal effects. Solid State Communications, 151(20)(2011), 1467–1471. doi:10.1016/j.ssc.2011.06.038

- M. Naceri, M. Zidour, A. Semmah, M.S.A. Houari, A.Benzair, A. Tounsi, Sound wave propagation in armchair single walled carbon nanotubes under thermal environment. J. Appl. Phys., 110(2011), 124322.

- A. Besseghier, A. Tounsi, M.S.A. Houari, A. Benzair, L. Boumia, H. Heireche, Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity. Physica E: Low-dimensional Systems and Nanostructures, 43(7)(2011), 1379 – 1386. doi:10.1016/j.physe.2011.03.008

- M. Zidour, K.H. Benrahou, A. Semmah, M. Naceri, H.A. Belhadj, K. Bakhti, A. Tounsi, The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory. Computational Mater. Sci. 51(1)(2012), 252–260. doi:10.1016/j.commatsci.2011.07.021

- Y. Gafour, M. Zidour, A. Tounsi, H. Heireche, A. Semmah, Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 48(2013), 118–123. doi:10.1016/j.physe.2012.11.006

- S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Composites Part B: Engineering, 57(2014), 21-24.

- A. Semmah, A. Tounsi, M. Zidour, H. Heireche, M. Naceri, Effect of chirality on critical buckling temperature of a zigzag single-walled carbon nanotubes using nonlocal continuum theory. Fullerenes, Nanotubes and Carbon Nanostructures, 23(6)(2015), 518–522.

- H. Baghdadi, A. Tounsi, M. Zidour, A. Benzair, Thermal effect on vibration characteristics of armchair and zigzag single walled carbon nanotubes using nonlocal parabolic beam theory. Fullerenes, Nanotubes and Carbon

Nanostructures, 23(3) (2015), 266–272.

- A. Tounsi, H. Heireche, H.M. Berrabah, I. Mechab, Comment on ‘Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory’, J. Phys.–Condens. Matter., 21(44)(2009), 448001.

- B. Arash, R. Ansari, Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Physica E: Low-dimensional Systems and Nanostructures, 42(8)(2010), 2058–2064.

- Q. Wang, C.M. Wang, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes. Nanotechnology, 18(7)(2007), 075702. doi:10.1088/0957-4484/18/7/075702.

- Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98(2005), 124301. doi:10.1063/1.2141648

- C.M. Wang, S. Kitipornchai, C.W. Lim, M. Eisenberger, Beam bending solutions based on nonlocal Timoshenko beam theory. J. Eng. Mech. 134(6) (2008), 475–481. 10.1061/(ASCE)0733-9399(2008)134:6(475)

- A. Tounsi, H. Heireche, E.A. Adda Bedia, Comment on “Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory”. [J. Appl. Phys. 103, 024302 (2008)]. J. Appl. Phys., 105(2009), 126105. doi:10.1063/1.3153960.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.