A refined shear deformation theory for bending analysis of isotropic and orthotropic plates under various loading conditions

Bharti Machhindra Shinde, Atteshamuddin Shamshuddin Sayyad, Shantaram M. Ghumare

Abstract


In this paper, a refined trigonometric shear deformation theory is applied for the bending analysis of isotropic and orthotropic plates under the various loading conditions. The two unknown variables are involved in the present theory. The present theory satisfies the shear stress free condition at top and bottom surface of the plates without using shear correction factors. The governing equations and boundary conditions are obtained by using the principle of virtual work. A closed form solution is obtained using Navier Solution Scheme. A simply supported isotropic and orthotropic plate subjected to sinusoidally distributed, uniformly distributed and linearly varying loads are considered for the detailed numerical study. The results obtained using present theory are compared with previously published results.

 


Keywords


shear deformation, trigonometric theory, shear correction factor, two variables.

Full Text:

PDF

References


- G.R. Kirchhoff, Uber das gleichgewicht und die bewegung einer elastischen scheibe. J. Reine Angew. Math. 40 (1850) 51-88.

- R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME J. App. Mech. 18 (1951) 31-38.

- J.N. Reddy, A simple higher order theory for laminated composite plates, ASME J. App. Mech. 51 (1984) 745–752.

- Y.M. Ghugal, R.P. Shimpi, A review of refined shear deformation theories of isotropic and anisotropic Laminated Plates. J. Reinf. Plast. Compo. 21 (2002) 775-813.

- M. Levy, Mémoire sur la théorie des plaques élastique planes. J. Math. Pures Appl. 30 (1877) 219-306.

- M. Stein, D.C. Jegly, Effect of transverse shearing on cylindrical bending, vibration and buckling of laminated plates. AIAA J. 25 (1987) 123-129

- M. Touratier, An efficient standard plate theory. Int. J. Eng. Sci. 29(8) (1991) 901–916.

- R.P. Shimpi, Y.M. Ghugal, A layerwise shear deformation theory for two-layered cross-ply laminated plates, Mech. Adv. Mater. Struct. 7 (2000) 331-353.

- Y.M. Ghugal, A.S. Sayyad, A static flexure of thick isotropic plates using trigonometric shear deformation theory. J. Solid Mech. 2 (1) (2010) 79-90.

- Y. M. Ghugal, A.S. Sayyad, Free vibration of thick isotropic plates using trigonometric shear deformation theory. J. Solid Mech. 3 (2) (2011) 172-182.

- J.L. Mantari, A.S. Oktem, C. Guedes Soares, A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. Int. J. Solids and Struc. 49 (2012) 43-53.

- J.L. Mantari, A.S. Oktem, C. Guedes Soares, A new higher order shear deformation theory for sandwich and composite laminated plates. Int. J. Solid. Struc. Part B 43 (2012) 1489-1499.

- A.M.A. Neves, A.J.M. Ferreira, E. Carrera, M. Cinefra , C.M.C. Roque, R.M.N. Jorge, C. M.M. Soares, Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique, Comp. Part B 44 (2013) 657-674.

- A.M.A. Neves, A.J.M. Ferreira, E. Carrera, C.M.C. Roque, M. Cinefra, R.M.N. Jorge, C. M.M. Soares. A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Comp. Part B 43 (2012) 711-725.

- A.M.A. Neves, A.J.M. Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque, R.M.N. Jorge, C. M.M. Soares. A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates, Compos. Part B 94 (2012) 1814-1825.

- A.S. Sayyad, Flexure of thick orthotropic plates by exponential shear deformation theory, Lat. Ame. J. Solids Struct. 10(2013) 473 – 490.

- A.S. Sayyad, Y.M. Ghugal, Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory. App. Comput. Mech. 6 (2012) 65–82.

- R.P. Shimpi, H. Arya, N.K. Naik, A higher order displacement model for the plate analysis. J. Reinf. Plast. Compos. 22 (2003) 1667-1688.

- H.T. Thai, T.P. Vo, A new sinusoidal shear deformation theory for bending, buckling and vibration of functionally graded plates. Appl. Math. Model. 37(5) (2013) 3269-3281.

- R.P. Shimpi, H.G. Patel, A two variable refined plate theory for orthotropic plate analysis. Int. J. Solids Struct. 43(22) (2006) 6783–6799.

- N.J. Pagano, Exact solutions for bidirectional composites and sandwich plates. J Compos. Mater. 4 (1970) 20-34.

- R.M. Jones, Mechanics of Composite Materials. McGraw Hill Kogakusha Ltd. Tokyo (1975).


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.