Contribution to probabilistic modeling of soil geo-mechanical properties for structural reliability analysis of buried pipes and foundations

Nabil KAZI TANI, Djamel NEDJAR, Tawfik TAMINE, Mabrouk HAMANE


This present study synthesizes a numerical approach to optimize foundation systems design and underground pipes based on the combination of elastoplastic soil behavior and probabilistic modeling of its geo-mechanical characteristics. Also, this work allows quantifying the effects of soil spatial variability on the mechanical and structural reliability of civil engineering infrastructures anchored at shallow depths in the ground. The illustrated simulations are based on simultaneous combination of the elastoplastic soil behavior and its spatial variability. The obtained results show that the probabilistic analysis of the spatial variability of soil properties into structure numerical modeling has a significant effect on the structural responses of civil engineering infrastructures, mainly if the structure length is relatively significant.


Sol-structure interaction; Structural Reliability; Elasto-Plastic behavior; Stochastic modeling


- E. Winkler, The teaching of elasticity and strength with special regard to their application in technology for polytechnic schools, construction academies, engineers, mechanical engineers, architects, etc. (In German) Ed. H. Dominicus, 1867

- MM. Filonenko-borodich, Some approximate theories of the elastic foundation. Uchenyie Zapiski Moskovskogo Gosudarstvennogo Universiteta, Mekhanica, (in Russian) 18 (1940) 46-3.

- PL. Pasternak, On a new method of analysis of an elastic foundation by means of two foundation constants. (in Russian) Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu Arkhitekture, Moscow, USSR, 1954.

- M.A. Hetényi, A general solution for the bending of beams on an elastic foundations of arbitrary continuity. J. Appl. Phys. 21(1) (1950) 55-58. doi:10.1063/1.1699420

- A.D. Kerr, Elastic and viscoelastic foundation models. J. Appl. Mech-T. ASME 31(3) (1964) 491-498. doi:10.1115/1.3629667

- A.D. Kerr, A study of a new foundation model. Acta Mech. 1(2) (1965) 135-147. doi:10.1007/BF01174308

- J.S. Horvath, Beam-column-analogy model for soil–structure interaction analysis. J. Geotech. Eng-ASCE 119(2) (1993) 358-364. doi:10.1061/(ASCE)0733-9410(1993)119:2(358)

- S.M. Elachachi, D. Breysse, L. Houy, Longitudinal variability of soils and structural response of sewer networks. Comp. Geotech. 31(8) (2004) 625–641. doi:10.1016/j.compgeo.2004.10.003

- D. Nedjar, M. Hamane, M. Bensafi, S.M. Elachachi, D. Breysse, Seismic response analysis of pipes by a probabilistic approach. Soil Dyn. Earthq. Eng. 27(2) (2007) 111-115. doi:10.1016/j.soildyn.2006.06.001

- M. Mekki, S.M. Elachachi, D. Breysse, M. Zoutat, Seismic behavior of R.C. structures including soil-structure interaction and soil variability effects. Eng. Struct. 126(1) (2016) 15–26. doi:10.1016/j.engstruct.2016.07.034

- N. Kazi Tani, D. Nedjar, M. Hamane, Non-linear analysis of the behavior of buried structures in random media. Eur. J. Environ. Civ. En. 17(9) (2013) 791–801. doi:10.1080/19648189.2013.822426

- N. Kazi Tani, D. Nedjar, T. Tamine, M. Hamane, A Probabilistic Assessment for Failure Prediction of Buried Cracked Spread Foundations. Arab. J. Sci. Eng. 42(3) (2017) 1161–1170. doi:10.1007/s13369-016-2368-z

- M. Seguini, D. Nedjar, Modelling of soil–structure interaction behaviour: geometric nonlinearity of buried structures combined to spatial variability of soil. Eur. J. Environ. Civ. En. 21(10) (2016) 1217-1236. doi:10.1080/19648189.2016.1153525

- S. Imanzadeh, D. Breysse, A. Marache, Settlement uncertainty analysis for continuous spread footing on elastic soil. Geotech. Geol. Eng. 33(1) (2015) 105-122. doi:10.1007/s10706-014-9828-6

- A. Khemis, A.H. Chaouche, A. Athmani, K.F. Tee, Uncertainty effects of soil and structural properties on the buckling of flexible pipes shallowly buried in Winkler foundation. Struct. Eng. Mech. 59(4) (2016) 739-759. doi:10.12989/sem.2016.59.4.739

- M. Zoutat, S.M. Elachachi, M. Mekki, M. Hamane, Global sensitivity analysis of soil structure interaction system using N2-SSI method. Eur. J. Environ. Civ. En. 22(2) (2018) 192-211. doi:10.1080/19648189.2016.1185970.

- T. Wood, M. Karstunen, Modelling the creep of deep foundations in soft Gothenburg clays. Eur. J. Environ. Civ. En. (2017). doi:10.1080/19648189.2017.1344146

- A.S. Vesic, Bending of Beams Resting on Isotropic Elastic Solid. J. Eng. Mech-ASCE 87(2) (1961) 35-53.

- A.S. Vesic, Beams on Elastic Subgrade and the Winkler's Hypothesis. In: Proceedings of the 5th International Society for Soil Mechanics and Geotechnical Engineering, 1961, pp. 845-850.

- A.S. Vesic, Foundation Engineering Handbook. Ed. H.F. Winterkorn and K.Y. Fang, Van Nostrand Reinhold Company, New York, 1975.

- T.W. Lambe, R.V. Whitman, Soil Mechanics. Ed. John Wiley, 1969.

- G. Filliat, The practice of soils and foundations. (in French), Edition du moniteur, 1981.

- G.A. Fenton, E.H. VanMarcke, Simulation of random fields via local average subdivision. J. Eng. Mech-ASCE 116(8) (1990) 1733–1749. doi:10.1061/(ASCE)0733-9399(1990)116:8(1733)

- E. VanMarcke, Random fields: analysis and synthesis. Cambridge, MA, London, England: MIT, 1983.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at