Environmental life cycle assessment of industrialization process of calcined dredged sediments



This research focus on the life cycle assessment (LCA) of dredged sediments valorization. This tool is part of an environmental management approach, which makes it possible to compare the environmental loads of the different stages of the life cycle of the same product and, by the way to deduce the most polluting step in environmental terms and thus the industrialization process of dredging sediments of dams is optimized by modelling using the GEMIS (Global Emission Model for Integrated Systems) 4.95 software and the classification and characterization method. To propose a model that is the more respectful of the environment, by determining the most environmentally friendly scenario, in order to exploit these dredged sediments after calcination treatment to make them active in the field of the building’s construction. The results of this life cycle analysis study of the new industrialization process of dredged sediments show that climate change potential (GHG) is 0,246 ton of CO2eq/t of sediments, acidification potential is 4,55×10-4 ton of SO2 eq/t of sediments, the tropospheric ozone precursor potential is 9,97×10-4 ton of TOPP eq/t of sediments and the cumulative energy and exergy demand is 2506,75 in MJ/t of sediments, these values are compared to others carried out in Algeria.


Life Cycle Assessment (LCA); Dredged sediments; Valorization; characterization method

Full Text:



- F. Kazi Aoual-Benslafa, M. Ameur, B. Mekerta, A. Semcha, Characterization of the dredged sediments of the Bouhanifia dam for reuse (in French). In : Proceedings of XIII National Days Coastal Engineering - Civil Engineering, Dunkerque; Ed. Paralia, 2014, pp. 999–1006. doi:10.5150/jngcgc.2014.110.

- L. Laoufi, Y. Senhadji, A. Benazzouk, Valorization of Mud from Fergoug Dam in Manufacturing Mortars. Case Studies Constr. Mater. 5(2016) 26–38. doi:10.1016/j.cscm.2016.06.002.

- M. Bibi, M.A. Chikouche, K. Ait Tahar, Influence of sandstone and / or silty clay additions on the properties of cementitious materials (in French). Mater. Tech. 96 (4-5) (2008) 165–172. doi:10.1051/mattech:2008043.

- A. Semcha, Valorisation of dredged sediments: Applications in the construction sector, the case of the Fergoug dam (in French). PhD Thesis, University of Reims Champagne-Ardenne, France, 2008.

- M. Siline, E. Ghorbel, M. Bibi, Valorization of a sandstone clay as an addition for the manufacture of a cement with low environmental impact (in French). In: Proceedings of 31st Meeting of AUGC, E.N.S. Cachan, France, May 29-31, 2013.

- N.-E. Bouhamou, F. Mostefa, A. Mebrouki, K. Bendani, N. Belas, Influence of Dredged Sediment on the Shrinkage Behavior of Self-Compacting Concrete. Mater. Tehnol. 50(1) (2016) 127–135. doi:10.17222/mit.2013.252.

- N. Belas, O. Belaribi, S. Aggoun, K. Bendani, N.-E. Bouhamou, A. Mebrouki, Enhancing the Value of Dam Dredged Sediments as a Component of a Self Compacting Concrete. Cem. Wapno Beton 6 (2014) 370-375.

- ANBT, National Agency for Dams and Transfers, 2014.

- B. Remini, C. Leduc, W. Hallouche, Evolution of large dams in arid regions: some examples from Algeria (in French). Sécheresse. 20(1) (2009) 096–103. doi:10.1684/sec.2009.0172.

- J. Bai, V. Chatain, V. Laforest, Life cycle assessment (LCA) of a terrestrial value chain of contaminated marine sediments (in French). Déchets Sci. Tech. 73(2017). doi:10.4267/dechets-sciences-techniques.3564.

- D. Hou, A. Al-Tabbaa, P. Guthrie, J. Hellings, Q. Gu, Using a Hybrid LCA Method to Evaluate the Sustainability of Sediment Remediation at the London Olympic Park. J. Clean. Prod. 83 (2014) 87–95. doi:10.1016/j.jclepro.2014.07.062.

- P.P. Falciglia, C. Ingrao, G. De Guidi, A. Catalfo, G. Finocchiaro, M. Farina, M. Liali, G. Lorenzano, G. Valastro, F.G.A. Vagliasindi, Environmental Life Cycle Assessment of Marine Sediment Decontamination by Citric Acid Enhanced-Microwave Heating. Sci. Total Environ. 619-620 (2018) 72–82. doi:10.1016/j.scitotenv.2017.11.085.

- F. Beolchini, V. Fonti, L. Rocchetti, G. Saraceni, B. Pietrangeli, A. Dell’Anno, Chemical and Biological Strategies for the Mobilisation of Metals/Semi-Metals in Contaminated Dredged Sediments: Experimental Analysis and Environmental Impact Assessment. Chem. Ecol. 29(5) (2013) 415–426. doi:10.1080/02757540.2013.776547.

- M. Sparrevik, T. Saloranta, G. Cornelissen, E. Eek, A.M. Fet, G.D. Breedveld, I. Linkov, Use of Life Cycle Assessments to Evaluate the Environmental Footprint of Contaminated Sediment Remediation. Environ. Sci. Technol. 45(10) (2011) 4235–4241. doi:10.1021/es103925u.

- N.E. Abriak, G. Junqua, V. Dubois, P. Gregoire, F.M. Farlane, D. Damidot, Methodology of Management of Dredging Operations I. Conceptual Developments. Environ. Technol. 27(4) (2006) 411–429. doi:10.1080/09593332708618653.

- N. Manap, N. Voulvoulis, Environmental Management for Dredging Sediments – The Requirement of Developing Nations. J. Environ. Manage. 147 (2015) 338–348. doi:10.1016/j.jenvman.2014.09.024.

- M.E. Bates, C. Fox-Lent, L. Seymour, B.A. Wender, I. Linkov, Life Cycle Assessment for Dredged Sediment Placement Strategies. Sci. Total Environ. 511 (2015) 309–318. doi:10.1016/j.scitotenv.2014.11.003.

- D. Chiaramonti, L. Recchia, R. Nistri, Critical Analysis of Field Data Versus LCA Results for GHG Saving Assessment through LCA of Sunflower Biodiesel Chain in Italy. In: European Biomass Conference and Exhibition Proceedings 2010, 18th EU BC&E-Lyon, France, 2010, pp. 2215–2222. doi:10.5071/18thEUBCE2010-VP5.2.11.

- A. Colantoni, L. Recchia, G. Bernabei, M. Cardarelli, Y. Rouphael, G. Colla, Analyzing the Environmental Impact of Chemically-Produced Protein Hydrolysate from Leather Waste vs. Enzymatically-Produced Protein Hydrolysate from Legume Grains. Agriculture-London 7(8) (2017) 62. doi:10.3390/agriculture7080062.

- S. Guerraiche, T. Serradj, Life cycle analysis applied to a plastic (Pehd) bin in Algeria (in French). Publications Geo Science Publications (2013). http://www.geosp.net/wp-content/uploads/2013/07/Said-GuerraicheSERRADJ-Tayeb.pdf (Accessed Dec 1, 2018).

- B. Guezuraga, R. Zauner, W. Pölz, Life Cycle Assessment of Two Different 2 MW Class Wind Turbines. Renew. Energ. 37(1) (2012) 37–44. doi:10.1016/j.renene.2011.05.008.

- A. Makhlouf, T. Serradj, H. Cheniti, Life Cycle Impact Assessment of Ammonia Production in Algeria: A Comparison with Previous Studies. Environ. Impact Asses. 50 (2015) 35–41. doi:10.1016/j.eiar.2014.08.003.

- D.A. Sirna, Medium-scale plants for the thermotechnical conversion of agro-forest biomass, use of the LCA methodology (in Italian). Doctoral Thesis, University of Tuscia – Viterbo, Italia, 2012.

- P. Puri, P. Compston, V. Pantano, Life Cycle Assessment of Australian Automotive Door Skins. Int. J. Life Cycle Assess. 14(5) (2009) 420–428. doi:10.1007/s11367-009-0103-7.

- T. Serradj, A. Makhlouf, M.S. Ali Ahmed, Application of Life Cycle Assessment to the Case Studies of New Nitrogen Fertiliser Production. Int. J. Global Warm. 10(1-3) (2016) 216–229. doi:10.1504/IJGW.2016.077914.

- J. Vlach, Life cycle assessment of municipal waste (In Czech). PhD Thesis, Brno university of technology, Czech republic, 2008.

- GEMIS© 4.7. Life cycle assessment software package, Global Emission Model for Integrated Systems, Version 4.7. Öko-Institut, 2011.

- International Standard Organization (ISO) 14040. Environmental management—life cycle

assessment: principles and framework. Geneva: International Organization for Standardization; 2006.

- International Standard Organization (ISO) 14044. Environmental management—life cycle

assessment: requirements and guidelines. Geneva: International Organization for

Standardization; 2006.

- O. Jolliet, M. Saade-Sbeih, S. Shaked, A. Jolliet, P. Crettaz, Environmental Life Cycle Assessment; Ed. CRC Press, 2015.

- J. Guinée, M. Gorrée, R. Heijungs, G. Huppes, R. Kleijn, A. de Koning, L. Oers, A.Wegener Sleeswijk, S. Suh, H. Udo de Haes, Handbook on life cycle assessment: operational guide to the ISO standards. Ed. Dordrecht, Netherlands: Kluwer Academic Publishers; 2002.

- J.M. Torrenti, L. D’Aloia-Scwartzentruber, The great book of concrete: Knowledge and Practice - Environmental Advances - Regulation and Normative Framework (in French). Ed. Moniteur, 2014.

- ADEME, Thermal drying (in French). ADEME / ADEME / DABEE, Department Industry and Agriculture. (2006). http://koudia.farm.free.fr/documentation/fichiersPDF/www.ademe.fr/sechage_thermique.pdf ((Accessed Dec 1, 2018)

- LCPC, Environmental assessment of a meta kaolin manufacturing process (flash calcination) (in French). Central Laboratory of Bridges and Pavements, France. Convention Argéco-LCPC. 2010.

- H. Aksas, S. Boughrara, K. Louhab, Enviornmental Impact of Algerian Cement Factories on Fauna and Flora. Asian J. Chem. 29 (2017). doi:10.14233/ajchem.2017.20170.

- S. Boughrara, M. Chedri, K. Louhab, Evaluation of Environmental Impact of Cement Production in Algeria Using Life Cycle Assessment. Int. Lett. Chem. Phys. Astron. 45 (2015) 79–84. doi:10.18052/www.scipress.com/ILCPA.45.79.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.