Effect of Different Supplementary Cementitious Materials on Mechanical and Durability Properties of Concrete

Rahul Sharma, Rizwan Ahmad Khan


Concrete is the most widely used composite in the world. Ordinary Portland cement (OPC) is the most commonly used binding material but the energy required for its production is large and its production leads to release of green house gases in the atmosphere therefore, the need for supplementary cementitious material is real. The utilization of Fly Ash (FA), Silica Fume (SF),Metakaolin (MK) and Ground Granulated Blast Furnace Slag (GGBS), as a pozzolanic material for concrete has received considerable attention in the recent years. This interest is a part of the widely spread attention directed towards the utilization of wastes and industrial byproducts in order to minimize the Portland cement consumption, the manufacture of which is being environment damaging. The paper reviews were carried out on the use of FA, SF, MK and GGBS as partial pozzolanic replacement for cement in concrete. The literature demonstrates that GGBS was found to increase the mechanical and durability properties at later age depending upon replacement level. Silica fume concrete performed better than OPC concrete even at early period for production of high strength concrete and high performance concrete. Fly ash increases the later age strength due to slow rate of pozzlanic reaction. Metakaolin was found to improve early age strength as well as long term strength but had poor workability.


SCMs Hardened properties; Durability; Metakaolin; GGBS ; Silica Fume

Full Text:



- P.C. Hewlett, Lea’s chemistry of cement and concrete. Elsevier, Fourth Edition Oxford, 2005.

- E. Worrell, L. Price, N. Martin, C. Hendriks, L.O. Meida, Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy 26 (1) (2001) 303–329. doi:10.1146/annurev.energy.26.1.303

- N.M. Altwair, M.A. Megat Johari, S.F. Saiyid Hashim, Flexural performance of green engineered cementitious composites containing high volume of palm oil fuel ash. Constr. Build. Mater. 37 (2012) 518–525. doi:10.1016/j.conbuildmat.2012.08.003

- M.H. Zhang, V.M. Malhotra, High-Performance concrete incorporating rice husk ash as supplementary cementing material. ACI Mater. J. 93 (6) (1996) 629–636.

- K. Ganesan, K. Rajagopal, K. Thangavel, Evaluation of bagasse ash as supplementary cementitious material. Cement Concrete Comp. 29 (2007) 515–524. doi:10.1016/j.cemconcomp.2007.03.001

- J. Bai, S. Wild, B.B. Sabir, J.M. Kinuthia, Workability of concrete incorporating pulverized fuel ash and metakaolin. Mag. Concrete. Res. 51 (3) (1999) 207–216. doi:10.1680/macr.1999.51.3.207

- E. Guneyisi, M.A. Gesoglu, Study on durability properties of high-performance concretes incorporating high replacement levels of slag. Mater. Struct. 41 (2008) 479–493. doi:10.1617/s11527-007-9260-y

- J.J. Brooks, M.A. Megat Johari, Effect of metakaolin on creep and shrinkage of concrete. Cement Concrete Comp. 23(6) (2001) 495–502. doi:10.1016/S0958-9465(00)00095-0

- F. Koksal, F. Altun, I. Yigit, Y. Sahin, Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr. Build. Mater. 22 (2008). 1874–1880. doi:10.1016/j.conbuildmat.2007.04.017

- M. Gesoglu, E. Ozbay, Effects of mineral admixtures on fresh and hardened properties of self-compacting concretes: binary, ternary and quaternary systems. Mater. Struct. 40 (2007) 923–937. doi:10.1617/s11527-007-9242-0

- M.A. Megat Johari, J.J. Brooks, S. Kabir, P. Rivard, Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 25(5) (2011) 2639–2648. doi:10.1016/j.conbuildmat.2010.12.013

- K. Kuder, D. Lehman, J. Berman, G. Hannesson, R. Shogren, Mechanical properties of self-consolidating concrete blended with high volumes of fly ash and slag. Constr. Build. Mater. 34 (2012) 285–295. doi:10.1016/j.conbuildmat.2012.02.034

- L.M. Federico, S.E. Chidiac, Waste glass as a supplementary cementitious material in concrete – Critical review of treatment methods. Cement Concrete Comp. 31(8) (2009) 606–610. doi:10.1016/j.cemconcomp.2009.02.001

- M.L. Wilson, S.H. Kosmatka, Portland Cement Association Manual, Design and Control of Concrete Mixture, Chapter 3: Fly Ash, Slag, Silica Fume, and Natural Pozzolans. 15th Edition, 2016

- U.S. Department of Transportation, Silica Fume User's Manual. Silica Fume Association, FHWA-1F-05-016, 2005.

- T. Nochaiya, W. Wongkeo A. Chaipanich, Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete. Fuel 89 (3) (2010) 768–774. doi:10.1016/j.fuel.2009.10.003

- P. Zhang, Q.F. Li, Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Compos. Part B-Eng. 45(1) (2013) 1587–1594. doi:10.1016/j.compositesb.2012.10.006

- ACI Committee, Guide for selecting proportions for high-strength concrete using portland cement and other cementitious materials. ACI 211.4R-08, 2008.

- G. Carette, A. Bilodeau, R.L. Chevrier, V.M. Malhotra, Mechanical properties of concrete incorporating high volumes of fly ash from sources in the U.S. ACI Mater. J. 90 (1993) 535-544.

- P. Nath, P. Sarker, Effect of fly ash on the durability properties of high strength concrete. Procedia Eng. 14 (2011) 1149–1156. doi:10.1016/j.proeng.2011.07.144

- ASTM C 618, Standard specification for coal fly ash and raw or calcined natural pozzolana for use in concrete. 2008.

- R. Kishore, V. Bhikshma, P.J. Prakash, Study on Strength Characteristics of High Strength Rice Husk Ash Concrete. Procedia Eng. 14 (2011) 2666–2672. doi:10.1016/j.proeng.2011.07.335

- J.M. Khatib, R.M. Clay, Absorption Characteristics of Metakaolin Concrete. Cement Concrete Res. 34(1) (2004) 19-29. doi:10.1016/S0008-8846(03)00188-1

- C. He, B. Osbaeck, E. Makovicky, Pozzolanic reaction of six principal clay minerals: activation reactivity assessments and technological effects. Cement Concrete Res. 25(8) (1995) 1691–1702. doi:10.1016/0008-8846(95)00165-4

- M.H. Zhang, V.M. Malhotra, Characteristics of a thermally activated alumina-silicate pozzolanic material and its use in concrete. Cement Concrete Res. 25(8) (1995) 1713–1725. doi:10.1016/0008-8846(95)00167-0

- A.R. Bagheri, H. Zanganeh, M.M. Moalemi, Mechanical and durability properties of ternary concretes containing silica fume and low reactivity blast furnace slag. Cement Concrete Comp. 34(5) (2012) 663–670. doi:10.1016/j.cemconcomp.2012.01.007

- F.A. Sabet, N.A. Libre, M. Shekarchi, Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Constr. Build. Mater. 44 (2013) 175–184. doi:10.1016/j.conbuildmat.2013.02.069

- C.K. Park, M.H. Noh, T.H. Park, Rheological properties of cementitious materials containing mineral admixtures. Cement Concrete Res. 35 (2005) 842–849. doi:10.1016/j.cemconres.2004.11.002

- M. Mazloom, A.A. Ramezanianpour, J. J. Brooks, Effect of silica fume on mechanical properties of high-strength concrete. Cement Concrete Comp. 26(4) (2004) 347–357. doi:10.1016/S0958-9465(03)00017-9

- R.P. Khatri, V. Sirivivatnanon, Effect of different supplementary cementitious materials on mechanical properties of high performance concrete. Cement Concrete Res. 25(1) (1995) 209–220. doi:10.1016/0008-8846(94)00128-L

- M.J. Shannag, High strength concrete containing natural pozzolan and silica fume. Cement Concrete Comp. 22(6) (2000) 399-406. doi:10.1016/S0958-9465(00)00037-8

- H. Yan, W. Sun, H. Chen, The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cement Concrete Res. 29(3) (1999) 423-426. doi:10.1016/S0008-8846(98)00235-X

- L. Jianyong, T. Pei, Effect of slag and silica fume on mechanical properties of high strength concrete. Cement Concrete Res. 27(6) (1997) 833-837. doi:10.1016/S0008-8846(97)00076-8

- J. Yajun, J.H. Cahyadi, Effects of densified silica fume on microstructure and compressive strength of blended cement pastes. Cement Concrete Res. 33(10) (2003) 1543–1548. doi:10.1016/S0008-8846(03)00100-5

- B.B. Sabir, Mechanical properties and frost resistance of silica fume concrete. Cement Concrete Comp. 19(4) (1997) 285-294. doi:10.1016/S0958-9465(97)00020-6

- E. Guneyisi, M. Gesoglu, S. Karaoglu, K. Mermerdas, Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Constr. Build. Mater. 34 (2012) 120–130. doi:10.1016/j.conbuildmat.2012.02.017

- C.S. Poon, S.C. Kou, L. Lam, Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build. Mater. 20(10) (2006) 858–865. doi:10.1016/j.conbuildmat.2005.07.001

- M.F.M. Zain, Md. Safiuddin, H. Mahmud, Development of high performance concrete using silica fume at relatively high water-binder ratios. Cement Concrete Res. 30(9) (2000) 1501-1505. doi:10.1016/S0008-8846(00)00359-8

- ACI Committee, Protection of metals in concrete against corrosion. American Concrete Institute 222R-01, 2001.

- A. Elahi, P.A.M. Basheer, S.V. Nanukuttan, Q.U.Z. Khan, Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 24(3) (2010) 292–299. doi:10.1016/j.conbuildmat.2009.08.045

- A. Oner, S. Akyuz, An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement Concrete Comp. 29(6) (2007) 505–514. doi:10.1016/j.cemconcomp.2007.01.001

- O. Boukendakdji, El.-H. Kadri, S. Kenai, Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete. Cement Concrete Comp. 34(4) (2012) 583–590. doi:10.1016/j.cemconcomp.2011.08.013

- ACI Committee, Ground granulated blast-furnace slag as a cementitious constituent in concrete. American Concrete Institute 233R-95, 1995.

- ASTM C 989, Standard specification for ground granulated blast furnace slag for use in concrete and mortars. Annual Book of American Standard of Testing and Materials Standards, 04(2) (1994).

- K.G. Babu, V.S.R. Kumar, Efficiency of GGBS in concrete. Cement Concrete Res. 30(7) (2000) 1031–1036. doi:10.1016/S0008-8846(00)00271-4

- C. Bilim, C.D. Atis, H. Tanyildizi, O. Karahan, Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv. Eng. Softw. 40(5) (2009) 334–340. doi:10.1016/j.advengsoft.2008.05.005

- J.M. Khatib, J.J. Hibbert, Selected engineering properties of concrete incorporating slag and metakaolin. Constr. Build. Mater. 19(6) (2005) 460–472. doi:10.1016/j.conbuildmat.2004.07.017

- S.E. Chidiac, D.K. Panesar, Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days. Cement Concrete Comp. 30(2) (2008) 63–71. doi:10.1016/j.cemconcomp.2007.09.003

- D.P. Bentz, Influence of water–cement ratio on hydration kinetics: simple models based on spatial considerations. Cement Concrete Res. 36(2) (2006) 238–244. doi:10.1016/j.cemconres.2005.04.014

- G. Hannesson, K. Kuder, R. Shogren, D. Lehman, The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete. Constr. Build. Mater. 30(2012) 161–168. doi:10.1016/j.conbuildmat.2011.11.046

- G. Li, X. Zhao, Properties of concrete incorporating fly ash and ground granulated blast-furnace slag. Cement Concrete Comp. 25(3) (2003) 293–299. doi:10.1016/S0958-9465(02)00058-6

- H.J. Chen, S.S. Huang, C.W. Tang, M.A. Malek, L.W. Ean, Effect of curing environments on strength, porosity and chloride ingress resistance of blast furnace slag cement concretes: A construction site study. Constr. Build. Mater. 35(2012) 1063–1070. doi:10.1016/j.conbuildmat.2012.06.052

- S. Teng, T.Y.D. Lim, B.S. Divsholi, Durability and mechanical properties of high strength concrete incorporating ultrafine Ground Granulated Blast-furnace Slag. Constr. Build. Mater. 40 (2013) 875–881. doi:10.1016/j.conbuildmat.2012.11.052

- A. Lübeck, A.L.G. Gastaldini, D.S. Barin, H.C. Siqueira, Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag. Cement Concrete Comp. 34(3) (2012) 392–399. doi:10.1016/j.cemconcomp.2011.11.017

- J.M. Gao, C.X. Qian, H.F. Liu, B. Wang, L. Li, ITZ microstructure of concrete containing GGBS. Cement Concrete Res. 35(7) (2005) 1299–1304. doi:10.1016/j.cemconres.2004.06.042

- V.G. Papadakis, S. Tsimas, Supplementary cementing materials in concrete Part I: efficiency and design. Cement Concrete Res. 32(10) (2002) 1525–1532. doi:10.1016/S0008-8846(02)00827-X

- A. Oner, S. Akyuz, R. Yildiz, An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement Concrete Res. 35(6) (2005) 1165–1171. doi:10.1016/j.cemconres.2004.09.031

- D.M. Roy, G.M., Idorn, Hydration, structure, and properties of blast furnace slag cements, mortars, and concrete. ACI J. Proc. 79(1982) 445–457.

- J.M. Khatib, Performance of self-compacting concrete containing fly ash. Constr. Build. Mater. 22(9) (2008) 1963–1971. doi:10.1016/j.conbuildmat.2007.07.011

- R. Siddique, Performance characteristics of high-volume Class F fly ash concrete. Cement Concrete Res. 34(3) (2004) 487–493. doi:10.1016/j.cemconres.2003.09.002

- H. Toutanji, N. Delatte, S. Aggoun, R. Duval, A. Danson, Effect of supplementary cementitious materials on the compressive strength and durability of short term cured concrete. Cement Concrete Res. 34(2) (2004) 311–319. doi:10.1016/j.cemconres.2003.08.017

- W. Sun, H. Yan, B. Zhan, Analysis of mechanism on water reducing effect of fine ground slag, high-calcium fly ash, and low calcium fly ash. Cement Concrete Res. 33(8) (2003) 1119–1125. doi:10.1016/S0008-8846(03)00022-X

- K.E. Hassan, J.G. Cabrera, R.S. Maliehe, The effect of mineral admixtures on the properties of high performance concrete. Cement Concrete Comp. 22(4) (2000) 267–271. doi:10.1016/S0958-9465(00)00031-7

- B.B. Das, S.P. Pandey, Influence of Fineness of Fly Ash on the Carbonation and Electrical Conductivity of Concrete. J. Mater. Civ. Eng. 23(9) (2011) 1365-1368. doi:10.1061/(ASCE)MT.1943-5533.0000298

- H.Z.Lopez-Calvo, P.Montes-Garcia, T.W. Bremner, M.D.A. Thomas, V.G.Jimenez-Quero, Compressive strength of HPC containing CNI and fly ash after long-term exposure to a marine environment. Cement Concrete Comp. 34(1) (2012) 110–118. doi:10.1016/j.cemconcomp.2011.08.007

- Z.S. Wang, Influence of fly ash on the mechanical properties of frame concrete. Sustain. Cities Soc. 1(3) (2011) 164–169. doi:10.1016/j.scs.2011.06.001

- S. Kou, C. Poon, D. Chan, Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete. J. Mater. Civ. Eng. 19 (2007) 709-717. doi:10.1061/(ASCE)0899-1561(2007)19:9(709)

- O. Sengul, M. Tasdemir, Compressive strength and rapid chloride permeability of concretes with ground fly ash and slag. J. Mater. Civ. Eng. 21(9) (2009) 494-501. doi:10.1061/(ASCE)0899-1561(2009)21:9(494)

- H. Paiva, A. Velosa, P. Cachim, V.M. Ferreira, Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cement Concrete Res. 42(4) (2012) 607–612. doi:10.1016/j.cemconres.2012.01.005

- R. Madandoust, S.Y. Mousavi, Fresh and hardened properties of self-compacting concrete containing metakaolin. Constr. Build. Mater. 35(2012) 752–760. doi:10.1016/j.conbuildmat.2012.04.109

- O. Karahan, K.M.A. Hossain, E. Ozbay, M. Lachemi, E. Sancak, Effect of metakaolin content on the properties self-consolidating lightweight concrete. Constr. Build. Mater. 31(2012) 320–325. doi:10.1016/j.conbuildmat.2011.12.112

- J.F. Young, S. Mindess, R.J. Gray, A. Bentur, The Science and Technology of Civil Engineering materials. Prentice Hall, Inc. New Jersey, 1998.

- R. Rixon, N. Mailvaganam, Chemical Admixtures of Concrete. E&FN Spon, London, 1999.

- L. Courard, A. Darimont, M. Schouterden, F. Ferauche, X. Willem, R. Degeimbre, Durability of mortars modified with metakaolin. Cement Concrete Res. 33(9) (2003) 1473–1479. doi:10.1016/S0008-8846(03)00090-5

- S. Wild, J.M. Khatib, A. Jones, Relative strength, pozzolanic activity and cement hydration in superplasticized metakaolin concrete. Cement Concrete Res. 26(10) (1996) 1537–1544. doi:10.1016/0008-8846(96)00148-2

- M. Said-Mansour, E.-H. Kadri, S. Kenai, M. Ghrici, R. Bennaceur, Influence of calcined kaolin on mortar properties. Constr. Build. Mater. 25(5) (2011) 2275–2282. doi:10.1016/j.conbuildmat.2010.11.017

- A.A. Ramezanianpour, H.Bahrami Jovein, Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr. Build. Mater. 30 (2012) 470–479. doi:10.1016/j.conbuildmat.2011.12.050

- A.K. Parande, B.B. Ramesh, M.A. Karthik, K.K. Kumaar, N. Palaniswamy, Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Constr. Build. Mater. 22 (3) (2008)127–134. doi:10.1016/j.conbuildmat.2006.10.003

- J.M. Khatib, S. Wild, Sulfate resistance of metakaolin mortar. Cement Concrete Res. 28(1) (1998) 83–92. doi:10.1016/S0008-8846(97)00210-X

- P. Bredy, M. Chabannet, J. Pera, Microstructure and porosity of metakaolin blended cements. Mater. Res. Soc. Symp. Proc. 137 (1988) 431– 436. doi:10.1557/PROC-137-431

- P.S. De Silva, F.P. Glasser, Hydration of cements based on metakaolin: thermochemistry. Adv. Cem. Res. 3(12) (1990) 167– 177. doi:10.1680/adcr.1990.3.12.167

- E. Guneyisi, M. Gesoglu, F. Karaboga, K. Mermerdas, Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Compos. Part B-Eng. 45(1) (2013) 1288–1295. doi:10.1016/j.compositesb.2012.09.085

- K.A. Gruber, T. Ramlochan, A. Boddy, R.D. Hooton, M.D.A. Thomas, Increasing concrete durability with high-reactivity metakaolin. Cement Concrete Comp. 23(6) (2001) 479–484. doi:10.1016/S0958-9465(00)00097-4


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2170-127X

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://revue.ummto.dz.